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ABSTRACT 

Rigorous monitoring programs for Dusky Grouse (Dendragapus obscurus), a game species, are 

lacking. Difficult-to-reach habitat and low probability of detection makes monitoring Dusky 

Grouse difficult. Our objectives were to 1) evaluate Dusky Grouse habitat associations and 

generate a state-wide map predicting Dusky Grouse habitat, 2) evaluate sampling methods and 

survey conditions for maximizing Dusky Grouse detection, and 3) evaluate protocols (i.e., 

number of sites and visits) and analytical methods for producing annual unbiased and precise 

indices of abundance. We created our habitat model using resource selection functions, random 

forest, and an ensemble approach. We compared spring v. summer sampling, use of electronic 

playback to increase detection, effect of route type (off-trail, trail, road) on point counts, and the 

effect of weather, background noise, day, and time on probability of detection. We evaluated and 

compared four analytical methods using simulations: time-to-detection model with hierarchical 

distance sampling, N-mixture model, raw count (naïve) and hierarchical distance sampling 

model. Multiple habitat characteristics affected relative probability of Dusky Grouse use 

including tree height and conifer forest vegetation types. Both habitat modeling methods were 

highly predictive and therefore we used an ensemble (frequency histogram) approach to create a 

state-wide map of Dusky Grouse habitat that was used to identify appropriate sampling sites for 

population monitoring. Spring point-count surveys conducted with electronic playback were 

most effective. Surveys located along roads/trails best balanced the trade-offs between sampling 

effort and survey design requirements, despite limiting inferences to Dusky Grouse populations 

located in prime habitat along roads/trails. Detection of Dusky Grouse was highest on clear days, 

with little wind and background noise, with surveys occurring 9–162 minutes post-sunrise during 

3–23 May. Simulation results indicated that N-mixture models where 80 sites visited four times 

resulted in unbiased estimates of population size with the highest precision. Transect-based 

distance sampling survey protocols during the spring also produced unbiased and acceptably 

precise (≤15% CV) estimates of grouse density when ≥35 transects of  ≥2.6-km length were 

surveyed per area of inference (e.g., administrative region). Our results provide baseline 

information necessary for the development of a state-wide monitoring program for Montana. 
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INTRODUCTION 

Accurate and precise estimates of abundance and population trends are necessary for 

effective conservation and management of our wildlife resources, particularly game species 

(Aebischer and Baines 2008, Joseph et al. 2009, Jakob et al. 2014, Weiser et al. 2019, Neubauer 

and Sikora 2020). It is challenging to effectively manage species and populations without 

rigorous monitoring programs. Knowledge gaps that limit our understanding of population trends 

and species distributions restrict our understanding of a species’ current status as well as its 

response to threats and environmental changes (Guisan et al. 2006, Sillett et al. 2012, Sofaer et 

al. 2019). Population monitoring of game species provides managers with information to 

evaluate the effect of management actions, set harvest regulations (e.g., bag limits, season 

lengths), and forecast numbers for hunting seasons for the public (Aebischer and Baines 2008, 

Sands and Pope 2010, Powell et al. 2011, Franceschi et al. 2014). Long-term monitoring may be 

financially costly and require high observer effort, highlighting the necessity of well-planned 

surveys and programs to achieve management goals while operating with limited resources 

(Weiser et al. 2019, Anderson and Stiedl 2019).  

 Dusky Grouse (Dendragapus obscurus) are an under-monitored upland game species that 

inhabit open coniferous forests of the western mountain ranges of North America from the 

central Yukon to northern Arizona and New Mexico (Aldrich 1963, Zwickel and Bendell 2004). 

A food source for many different raptor and mammalian species, Dusky Grouse also provide 

economic and recreational benefits through revenue from hunting license sales and bird-

watching opportunities (Pelren and Crawford 1999, Sands and Pope 2010). Although Breeding 

Bird Survey (BBS) data suggests most populations are stable, low detection rates make 
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population trend estimates uncertain (Sauer et al. 2020) and many environmental and 

anthropogenic forces threaten Dusky Grouse habitat and populations. Dusky Grouse populations 

may be negatively impacted by beetle-killed forests, wildfire, timber harvest, and climate change 

(Bendell and Elliot 1967, Martinka 1972, Pelren and Crawford 1999, Chan-McLeod 2003, Youtz 

et al. 2022). Although Dusky Grouse likely occupy much of their historical distribution, habitat 

loss resulting from agricultural expansion and urbanization has resulted in local extirpations 

(Schroeder 2006); one study suggests that Dusky Grouse populations have declined in the past 

100+ years as a result of timber harvest and overhunting (DeSante and George 1994). Despite 

being a commonly hunted upland game species, agencies lack information on Dusky Grouse 

abundance, distribution, and population trends necessary for effective management.  

 Dusky Grouse are often managed as part of an aggregation of forest grouse species, 

including ruffed grouse (Bonasa umbellus), spruce grouse (Falcipennis canadensis), and Sooty 

Grouse (Dendragapus fuliginosus). Until 2006, dusky and sooty grouse were considered one 

species, the blue grouse (Schroeder 2006), and these grouse are still monitored as a single 

species in many states. The species designation change was based on mitochondrial DNA, but 

sooty grouse and Dusky Grouse also differ in the color of the bare neck patches visible during 

breeding displays and loudness of their hooting calls (Brooks 1929, Barrowclough 2004). Forest 

grouse hunting occurs across the entire distribution of the Dusky Grouse, but hunting statistics 

are often collected for all forest grouse species in aggregate. In states such as Nevada, 

Washington, and Oregon, hunting statistics for dusky and sooty grouse are combined (Espinosa 

2018, Washington Department of Fish and Wildlife 2022, Oregon Department of Fish & 

Wildlife 2023). In Washington and Utah all forest grouse species are managed collectively, but 
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individual species statistics may be available (Bernales et al. 2017, Washington Department of 

Fish and Wildlife 2022). In Nevada during 2007–2017, 1,119 hunters harvested around 1,400 

blue grouse annually, while in Utah from 1963–2016, an annual average of 14,000 hunters 

harvested 39,000 forest grouse (Bernales et al. 2017, Espinosa 2018). Some states such as 

Montana, Wyoming, and Colorado collect species-specific information from hunter harvest data 

(Gates 2019, Colorado Parks and Wildlife 2020, Montana Fish, Wildlife and Parks 2021). In 

Wyoming from 2009–2018 the 10-year average was 3,600 hunters per year harvesting 

approximately 8,400 Dusky Grouse (Gates 2019). In Colorado, annual averages were not easily 

accessible, but from 2019–2020, around 7,000 hunters harvested approximately 12,379 Dusky 

Grouse (Colorado Parks and Wildlife 2020). Until recently in Montana, Dusky Grouse statistics 

for the past decade were not available, but numbers for 2021–2022 show that approximately 

5,600 hunters harvested 12,300 Dusky Grouse (Montana Fish, Wildlife, and Parks 2021). Even 

in states with species-specific hunter harvest data, population monitoring for Dusky Grouse is 

often non-existent beyond basic hunter harvest surveys or wing and tail collections, which 

provide little relevant information on population trends (Dahlgren et al. 2021, McNew et al. 

2023).   

 Information from hunter harvest surveys and wing and tail samples have been used to 

estimate grouse population trends and productivity (Amman and Ryel 1963, Aebisher and Baines 

2008, Sands and Pope 2010). Hunter harvest surveys consist of telephone and mail 

questionnaires used to estimate harvest and hunting effort under the premise that survey results 

could reflect changes in species abundance as well as hunting effort and harvest (Aebischer and 

Baines 2008, Sands and Pope 2010). Hunter harvest surveys can be biased due to hunters 
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unintentionally inflating success rates or giving rounded answers, providing non-random 

sampling information (i.e., hunting may occur more in some areas than others), and non-

responses from hunters that do not return surveys (Atwood 1956, Rogers 1963, Sands and Pope 

2010). Productivity indices are estimated using the ratio of harvested juveniles to adult females, 

which is calculated from wing and tail samples (Flanders-Wanner 2004, Hagen and Loughin 

2008). However, age ratios calculated from wings of hunter harvested grouse most likely yield 

biased estimates if uncorrected for age-specific vulnerability to hunting (Flanders-Wanner et al. 

2004, Hagen and Loughin 2008, Sands and Pope 2010). Moreover, hunter harvest data does not 

provide information on populations prior to harvest and may be better for monitoring hunter 

effort than game bird population trends (Sands and Pope 2010). For Dusky Grouse, hunter 

harvest data may be especially limited in amount and applicability as this species often migrates 

higher in elevation to relatively inaccessible coniferous habitat starting in late summer (Zwickel 

and Bendell 2004). 

 Other survey methods for monitoring upland game bird populations include spring 

breeding season surveys and summer brood surveys (Rogers 1963, Sands and Pope 2010). For 

many grouse species, male courtship displays increase detection probability of males during the 

spring breeding season. Traditionally, biologists use hooting and drumming counts from 

displaying males during spring surveys to estimate density and abundance of forest grouse 

populations (Rogers 1963, Sands and Pope 2010). In addition, brood surveys conducted along 

roads in late summer are used to monitor productivity and abundance of forest grouse (Schroeder 

2010). Summer brood count surveys may result in small sample sizes due to low detectability, 

leading to imprecise estimates which may not be representative of productivity (Sands and Pope 
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2010, Hansen et al. 2015). Previously in Montana, Dusky Grouse hooting surveys based on 

protocols for ruffed grouse drumming surveys, brood counts, hunter check stations, wing and tail 

samples, and harvest questionnaires were used to monitor populations of Dusky Grouse, but in 

recent decades few if any surveys have occurred (Rogers 1963, Newell 2016). 

Statistical Methods for Unbiased Population Estimates 

Even though population counts and relative abundance indices are commonly used to 

monitor grouse, they do not account for observation error (Rosenstock et al. 2002, Sands and 

Pope 2010). Imperfect detection (i.e., downward-biased observation error) of individuals limits 

the ability of population counts or relative abundance indices to provide unbiased estimates of 

abundance or population trends if detection probability varies temporally or spatially 

(Rosenstock et al. 2002, Sands and Pope 2010). Without considering detectability, observed 

population trends result from variation in detection probability rather than variation in population 

size (Rosenstock et al. 2002, Kéry and Royle 2016). Failure to adjust grouse counts to account 

for detectability can result in underestimation of population densities or occupancy, downward 

bias in abundance and trend estimates, and imprecise understanding of spatial distribution or 

habitat relationships (Thomspson 2002, Kéry et al. 2005, Royle et al. 2005). Incorrect or biased 

inferences can lead to incorrect management recommendations, which is especially problematic 

for game species where abundance estimates are used to set harvest limits (Kéry and Schaub 

2012, Jakob et al. 2014). There are several modeling approaches that account for imperfect 

detection with unmarked individuals (i.e., distance sampling, time-removal models, N-mixture 

models), and these methods show potential for monitoring forest grouse (Buckland et al. 2001, 
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Farnsworth et al. 2002, Warren and Baines 2011, Amundson et al. 2014, Franceschi et al. 2014, 

Jakob et al. 2014, Kéry and Royle 2016, McCaffery et al. 2016).  

Distance sampling models estimate the probability of detection using distance-decay 

functions, assuming detection probability decreases with distance from the observer (Buckland et 

al. 2001). Assumptions of distance sampling include: 1) individuals are distributed independently 

of the transects or point locations, 2) perfect detection of individuals located on the transect or at 

the point, 3) distances are measured accurately, 4) individuals are detected at their initial 

location, 5) correct identification of individuals and no double-counting, and 6) individuals are 

distributed uniformly in regard to distance from the transect or in regard to distance from the 

point, individuals are distributed according to a triangular distribution (Buckland et al. 2001, 

Thomas et al. 2010, Buckland et al. 2015, Sollman et al. 2015). An advantage of distance 

sampling is that it only requires visiting a survey site once, and hierarchical models allow us to 

incorporate covariates for both detection and abundance (Buckland et al. 2001, Kéry and Royle 

2016). A disadvantage of distance sampling is that it requires an adequate number of detections 

(e.g., 75–100 for point counts and 60–80 for line transects) for analysis, an appropriate distance-

decay function for the data to be chosen (Buckland et al. 2001)., and detections to occur at 

varying distances.  

Time-removal models estimate detection as a product of both availability and 

perceptibility. Availability is the probability that an individual produces a cue (like hooting or 

wing flutter) that allows it to be detected, while perceptibility is the probability that an observer 

detects an individual provided it produces a cue (Farnsworth et al. 2002, Amundson et al. 2014). 

Time-removal models break a survey into time-intervals and record the interval in which an 
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individual is first detected, using this to estimate detection (Farnsworth et al. 2002). More recent 

models, such as hierarchical distance sampling with time-removal, allow the separate estimation 

of availability and perceptibility with covariates on both detection components and abundance 

(Amundson et al. 2014, Kéry and Royle 2016). Combing hierarchical distance sampling with 

time-removal, a model that accounts for availability, may be especially useful for relaxing the 

distance sampling assumption of perfect detection at a distance of 0 (Amundson et al. 2014). 

Assumptions of time-removal with hierarchical distance sampling methods include those for 

distance sampling plus 1) availability and perceptibility are independent or the probability of one 

does not affect the probability of the other, 2) the survey occurs within a period of closure where 

there is no births, deaths, emigration, or immigration, and 3) probability an individual is present 

in the survey area is equal to 1 (Amundson et al. 2014). A disadvantage of hierarchical distance 

sampling with time removal is that with low availability, precision of abundance estimates may 

also be low (Amundson et al. 2014).  

N-mixture models are hierarchical models that use spatially and temporally replicated 

counts to estimate local abundance while incorporating imperfect detection (Royle 2004). 

Assumptions of N-mixture models are: 1) counts occur within a period of closure, 2) no false 

positives where an individual is counted twice, 3) all individuals are detected independently or 

the detection of one individual is not affected by the probability of detecting a different 

individual, 4) all individuals have the same probability of detection at a site during a given 

survey, and 5) the distributions of abundance and probability of detection are adequately 

described by their chosen parametric distribution (Royle 2004, Kéry and Schaub 2012). An 

advantage of N-mixture models is that covariates can be modeled on both abundance and 
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detection (Kéry 2008). In addition, while N-mixture models perform better with higher 

detections and more spatial and temporal replicates, they can still perform well with sparse or 

patchy data that contains many zeros (Yamaura 2013, Kéry and Royle 2016, McCaffery et al. 

2016). The disadvantages of N-mixture models are that they are very sensitive to assumption 

violations, they require repeat visits which increases travel costs and time commitment for 

observers, and a large number of sites may be needed when densities are low in order to obtain 

enough non-zero observations for reliable inferences (Royle 2004, Dénes et al. 2015, Barker et 

al. 2018, Duarte et al. 2018, Knape et al. 2018, Link et al. 2018).  

Developing a Population Monitoring Program 

 There are many factors to consider when creating a population monitoring program for 

wildlife management. First and foremost, population monitoring methodologies should be driven 

by goals that are formulated before monitoring begins (Pollock et al. 2002, Witmer 2005). These 

goals should specify the purpose of the monitoring program, the parameters of interest such as 

abundance or occupancy, desired precision levels for population estimates and detectability, and 

how results will be used. Second, managers should evaluate survey designs, sampling methods, 

and statistical analyses and select those that account for imperfect detection, provide precise and 

unbiased estimates, and align with the species’ ecology (Pollock et al. 2002, Witmer 2005). 

Third, a power analysis is needed to evaluate the ability of the chosen protocol and analytical 

methods to meet the goals of the specific monitoring program (Gibbs et al. 1999).  After the 

monitoring program is underway and data becomes available, additional analyses should be 

conducted to re-assess the ability of the chosen protocol and analytical method to meet objectives 

(Gibbs et al. 1999). Fourth, managers should consider the logistical feasibility of the proposed 
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survey, including budget, time, and personnel constraints. Lastly, the population monitoring 

program should yield results that are easily interpretable by the intended audience.   

 No studies have formally evaluated the efficacy of different sampling and analytical 

methodologies for monitoring Dusky Grouse populations, especially those that account for 

imperfect detection and aim to produce unbiased estimates of population sizes and trends. To 

effectively monitor and manage Dusky Grouse populations, reliable species-specific survey 

methods need to be developed, tested, and implemented. The primary goal of my dissertation 

research was to inform the development of an effective population monitoring program for 

Dusky Grouse that met the Montana Department of Fish, Wildlife and Parks’ monitoring goal of 

unbiased and precise (coefficient of variation ≤ 15%) annual estimates of abundance. After 

defining monitoring goals, we evaluated various sampling and analytical methods that may allow 

precise abundance estimation. First, we created the first species distribution models of Dusky 

Grouse habitat in Montana, which improved our understanding of Dusky Grouse habitat 

relationships and helped us select appropriate sampling locations. Second, we evaluated different 

sampling methods, protocols, and survey conditions to find those that maximized probability of 

detection for Dusky Grouse. Third, we used simulations to evaluate different protocols (i.e., 

number of sites and visits) and analytical methods for producing unbiased and precise abundance 

estimates using different abundance and detection scenarios. Finally, we provide 

recommendations for the creation of a population monitoring for Dusky Grouse in Montana.  
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Introduction 

Dusky Grouse (Dendragapus obscurus) are an under-monitored galliform and conifer 

forest specialist found in the interior mountain ranges of western North America (Aldrich 1963, 

Zwickel and Bendell 2004). Although presumed to occupy most of their historical distribution 

(Zwickel and Bendell 2004), basic information on population trends, regional habitat 

associations, and resolute estimates of species distributions are lacking. Unlike other upland 

gamebird species, standardized survey protocols are not developed or broadly applied for Dusky 

Grouse. Common multi-species survey protocols (e.g., the Breeding Bird Survey) are ineffective 

for monitoring Dusky Grouse populations due to a mismatch between survey locations and 

remote Dusky Grouse habitats that limit encounter rates (Sauer et al. 2020). The lack of 

information on population status, distributions, and habitat associations hinders effective 

population management. Increasing environmental stressors (e.g., wildfire, exurban 

development, timber harvests, beetle kill, climate change) in Dusky Grouse habitats necessitate 

the development of targeted and robust population and habitat monitoring protocols (Martinka 

1972, Redfield 1973, Chan-McLeod and Bunnell 2003, Youtz et al. 2022).  

Accurate species distribution models (SDMs) provide information on distribution and 

habitat associations that are useful for conservation and management. Species distribution 

models can be used to direct survey locations towards potential habitat thus increasing the 

likelihood of species detection, assist with determining conservation status, delineate areas for 

conservation, and help predict a species response to management actions or climate change 

(Guisan et al. 2006, Sofaer et al. 2019). Recently the number of techniques available for creating 

species distribution models has grown, and now includes more classic techniques such as 
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resource selection functions (RSFs), as well as newer machine learning methods (Elith and 

Graham 2009, Grenouillet et al. 2011). Each approach has its own limitations, and no one 

method is universally best for all applications (Araùjo and New 2006, Elith and Graham 2009). 

In addition, the best technique for predicting habitat suitability may differ within the study area 

versus outside the study area (Guisan et al. 2017). Unfortunately, the subjective choice of 

modeling technique can influence the predictions of species occurrence (Araùjo and New 2006, 

Pearson et al. 2006). Because conservation planning is increasingly reliant upon SDMs (Guisan 

and Thuiller 2005, Guisan et al. 2013), it is imperative that predictions of species occurrence and 

distribution are accurate. Recent research has highlighted the benefits of ensemble modeling, 

where predictions of species distributions are produced with several statistical techniques, which 

can improve accuracy and reduce uncertainty in SDM predictions (Araújo et al. 2005, Marmion 

et al. 2009, Grenouillet et al. 2011). In addition, consensus within the suite of models on 

predicted habitat may increase certainty in the model’s accuracy, while variation in predictions 

across models may serve as an index of uncertainty in species occurrence (Latif et al. 2013).  

We used an ensemble modeling approach to understand habitat associations and predict 

the distribution of Dusky Grouse in Montana, USA. Our specific objectives were to: (1) explore 

relationships between Dusky Grouse occurrence and landscape-level habitat characteristics, (2) 

generate and test the accuracy of predictions of dusky habitat using multiple modeling 

techniques, and (3) evaluate the ability of our state-wide predictions to guide monitoring efforts 

by being able to predict appropriate population survey sites at scales relevant to management. To 

address these objectives, we developed and applied two types of species distribution models, 
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RSFs and randomized classification trees (e.g., Random Forest), and used an ensemble of 

predictions to identify potential habitat for Dusky Grouse in Montana. 

Methods 

Study Area 

Our study area included the entire state of Montana, USA. State-level wildlife 

management by the Montana Department of Fish, Wildlife & Parks (MFWP) is divided into 7 

administrative regions (Figure 1). Dominant vegetation types, based on vegetation physiognomy 

in western Montana (Regions 1–3) are mainly conifer forests, intermixed with shrublands and 

intermountain foothills grasslands (Landfire 2016a). Eastern Montana (Regions 6–7) are 

dominated by grasslands, shrublands, and cultivated lands, and mountainous Dusky Grouse 

habitat is less abundant and more isolated (Landfire 2016a). Central Montana (Regions 4–5) 

transitions from vegetation types found in western Montana to those found in eastern Mountain 

and is dominated by both mountainous and coniferous forests in the west and grasslands, 

shrublands, and cultivated lands toward the east (Landfire 2016a). Elevation varies from 550–

3897m (United States Geological Survey 2017).  

Grouse Observations 

We used two independent datasets of Dusky Grouse observations: a dataset with used and 

pseudo-absent locations for training and testing our models, and an independent dataset with 

presence-only locations for additional validation tests. For training our SDMs, we obtained 

Dusky Grouse observation data from the Integrated Monitoring in Bird Conservation Regions 

program (IMBCR) administrated by the Bird Conservancy of the Rockies. IMBCR survey sites 
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occur over much of the mid-western and western parts of the United States, with the surveyed 

land broken up into different strata that are based on land ownership and topographic features 

(Pavlacky et al. 2017, Hanni et al. 2018, Woiderski et al. 2018). A grid of 1-km2 cells is 

generated for each stratum, with 16 sites evenly spaced every 250 m within each cell (Woiderski 

et al. 2018). Each spring during May–July, a spatially balanced sampling algorithm called 

generalized random-tessellation stratification (GRTS), is used to randomly select a minimum of 

2 sample units (cells) within each stratum, within which observers conduct 6-minute point-

counts at each of the 16 sites (Woiderski et al. 2018). We obtained observation data from spring 

surveys conducted during 2009–2020 for a total of 25,654 surveys conducted across 6,092 sites 

in Montana. Dusky Grouse were detected (observed ≥ 1 time) at 132 sites and not detected 

(pseudo-absent) at 5,960 sites (Table 1; Figure 1). Because the detection of grouse is imperfect, 

the observation data fit a standard used vs available sampling design common to species 

distribution modeling (Design 1, sampling protocol A; Manly et al. 2002).   

Montana Fish, Wildlife & Parks (MFWP) field staff recorded the geographic locations of 

incidental Dusky Grouse observations observed during unrelated field activities conducted in the 

springs (April–June) of 2017–2021. During the 4-year period, 194 Dusky Grouse locations were 

recorded (Figure 1), which we used as an independent dataset to further evaluate the predictive 

accuracy of our models. 

Environmental Predictors 

We assumed that all Dusky Grouse observed were located within 250-m of the IMBCR 

point count location because Dusky Grouse calls are difficult to detect at distances greater than 

100 m (Farnsworth 2020). We calculated the mean statistic or proportion of a habitat 
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characteristic within the 250-m radii circle centered on the survey point using geospatial 

modeling environment (GME), remotely sensed geospatial datasets, and the spatial analyst tools 

in ArcGIS Pro (Environmental Systems Research Institute, Redlands, CA; Appendix A; Beyer 

2015). Because Dusky Grouse tend to be found at higher elevations, may prefer east to south-

facing slopes, and brood-rearing females have been found to prefer more moderate slopes, we 

extracted average elevation, slope, and proportions of different facing (N, NE, E, etc.) aspects 

from a digital elevation model (Stauffer and Peterson 1986, U.S Geological Survey 2017, 

Farnsworth 2020). In addition, we calculated the mean distance to the nearest stream and to the 

nearest road using spatial analyst tools from ArcGIS pro (Environmental Systems Research 

Institute, Redlands, CA) and road and stream geospatial data layers (Montana Spatial Data 

Infrastructure 2017, 2018). As the attribute data for the geospatial road layer was incomplete, we 

had to group all road types together including highways, secondary roads, and forest service 

roads with and without seasonal closures. We did not expect this to affect our results. We used 

the LANDFIRE geospatial data with a 30 × 30 m spatial resolution to describe existing 

vegetation type (EVT), which is the type of plant community present, projected canopy cover in 

1% increments (EVC), and average height of the dominant vegetation given in 1-m increments 

(EVH; Landfire 2016a, b, c, 2019, 2020). We condensed the 1% increments for the canopy 

vegetation to 10% increments and the 1-m increments for vegetation height to 5-m increments to 

reduce the number of variables evaluated. For both EVC and EVH data, there were also several 

categories of developed habitat or barren habitat that were grouped into two categories: 

developed and sparse vegetation. In addition, we created a conifer forest layer based on the 

descriptions for the different LANDFIRE vegetation types. We used this layer to calculate the 



17 

 

average distance to the edge of the conifer forest from within the forest and outside of the forest 

(Appendix A; LANDFIRE 2016a). We removed variables from consideration if they occurred at 

less than 1% of the survey sites. 

Habitat Associations and Ensemble of Predictions 

 Resource Selection Functions. We fit RSFs using general linear mixed models (GLMMs) 

with a logit link function, binomial error distribution, and the “bobyqa” optimizer with a 

maximum of 100,000 iterations for approximating beta coefficients using the ‘lme4’ package in 

program R (Bates et al. 2015, R Core Team 2017). Our GLMMs included the binomial response 

variable of whether a Dusky Grouse was detected (1) or not detected (0) at each site, 

combinations of environmental predictors, and a random intercept for unique IMBCR transects 

to account for dependencies in the observation data due to the survey points being grouped along 

survey routes (Zurr 2009, Hanni et al. 2018).   

Prior to model fitting, we explored possible non-linear responses of Dusky Grouse to 

habitat variables using univariate generalized additive models (GAMs) and linear equations 

hypothesized to represent the linear and nonlinear forms such as a quadratic form [x + x2] and 

pseudolinear threshold (ln[x + 0.001]; Franklin 2000, Guisan and Zimmerman 2000, Guisan et 

al. 2002, Dugger et al. 2005, McNew et al. 2015). We performed the preliminary screenings of 

the three functional responses using univariate models built using GLMMs with a logit link 

function and binomial error distribution, evaluating the model support using Akaike’s 

Information Criterion for small sample size (AICc; Burnham and Anderson 2002). We also 

removed additional variables from consideration if they showed no relationship with use by 

Dusky Grouse resulting in 90 environmental predictor variables (Appendix A). After preliminary 
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screenings of the functional responses, we assessed multicollinearity in the remaining habitat 

predictor variables for all possible pairings using Spearman-rank correlations. We considered 

variables to be correlated when |r| > 0.7. If variables were correlated, we first used knowledge of 

general Dusky Grouse habitat to evaluate which variable was more biologically relevant to 

Dusky Grouse. If no previous information about the habitat characteristic was available, using 

the univariate models with the best performing functional response for the correlated variables 

we evaluated model support using AICc, and whichever correlated variable was least supported 

was removed from our analysis (Burnham and Anderson 2002, Arnold 2010, Aldridge et al. 

2012). If a variable was correlated (|r| > 0.7) with more than one variable, we evaluated 

correlations based upon most correlated to least, removing variables until only one uncorrelated 

variable remained in the dataset. After assessing for pairwise correlations, we had 66 remaining 

variables.   

We first evaluated predictors in groups based on variable type: aspect, other non-

vegetation variables (slope, elevation, distance to variables), conifer vegetation type (divided into 

two groups that were later combined due to model convergence issues), hardwood vegetation 

type, grassland vegetation type, shrubland vegetation type, riparian vegetation type, other 

vegetation type, tree canopy cover, shrub canopy cover, herbaceous vegetation cover (also 

divided into multiple groups that were later combined due to model convergence issues), other 

vegetation canopy cover, and vegetation height. Within each group, we used backwards 

elimination to determine the top performing variables for inclusion in the final candidate model 

set, with variable removal based on the p-value calculated using the ‘lme4’ package in program 

R from asymptotic Wald tests, where the variable with the highest p-value > 0.05 was removed 
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(Hosmer et al. 2013, Bates et al. 2015, Heinze et al. 2018). Backwards selection continued until 

all variables within the model had p-values < 0.05 (Heinze et al. 2018). The top performing 

variables from each group were then added to a global model and again evaluated using 

backwards elimination to determine a final set of variables for predicting Dusky Grouse habitat. 

We calculated the 95% confidence intervals for the beta coefficients using the Wald method, 

which estimates the fixed-effects confidence intervals, using the ‘lme4’ package in program R 

(Bates et al. 2015, R Core Team 2017). We used the high and low confidence intervals to create 

two additional maps to examine uncertainty in the predictions (Appendix B).  

Random Forest. We developed random forest (RF) models using the train and 

trainControl functions and the ‘rf’ model from the ‘caret’ package in R (Kuhn 2008, R Core 

Team 2017). Random forest models are sensitive to datasets where the response variables are 

imbalanced, such as our IMBCR dataset where the number of pseudo-absent locations greatly 

outnumbered the used locations (Evans and Cushman 2009, Kuhn and Johnson 2013, Kuhn 

2019). To account for our dataset being unbalanced, we used the down-sampling function within 

the caret package to rarify the random sampling data to a 1:1 ratio with the used locations (Evans 

et al. 2011, Kuhn and Johnson 2013, Kuhn 2019). We tuned our model by varying the number of 

trees and the number of variables to possibly split at each node (Kuhn 2008, Kuhn and Johnson 

2013, R Core Team 2017). The number of variables to possibly split at each node, “mtry”, was 

tested with the square root of the number of predictors, the square root of the number of 

predictors divided by 2, and the square root of the number of predictors times 2 (Breiman 2001, 

Kuhn and Johnson 2013). The number of trees tested were 300, 500, 800, 1000, and 2000. After 

we tuned the model, we trained it with repeated cross validation, with 5 folds and 500 repeated 
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k-fold cross validation iterations. We generated variable importance using the ‘randomForest’ 

package, which calculates the impact of removing a variable on the model or mean decrease in 

accuracy (Liaw and Wiener 2002, R Core Team 2017).  

Predictions of Dusky Grouse Habitat 

We developed separate statewide predictions of relative use from each model. We used a 

250-m moving window to create spatial layers for each variable upon which to predict our 

models. We first used slope coefficients from our top GLMM to fit an RSF (Manly et al. 2002). 

Second, to evaluate Dusky Grouse occurrence across Montana using the random forest model, 

we used the predict function in R with our 250-m circular moving window layers to construct a 

predictive map of potential Dusky Grouse habitat (Kuhn 2008, R Core Team 2017). We then 

rescaled RSF and random forest predictive maps of potential Dusky Grouse habitat in Montana 

to be between 0 and 1, so that the two predictive maps were on the same scale.  

Model Evaluation 

We evaluated the performance of our models in two ways: repeated k-fold cross 

validation with 5 folds where 80% of the IMBCR data used to train the model and 20% used to 

test the model, and with an independent dataset. We conducted a simulation with 500 iterations 

(externally for the RSF and within the model fitting process for the RF) where we used k-fold 

cross validation and threshold-independent ROC/Area Under Curve (AUC) to evaluate mean 

model performance with the IMBCR training dataset (Zweig and Campbell 1993, Fielding and 

Bell 1997). We calculated the average AUC value with a 95% confidence interval. An AUC 

greater than 0.7 indicates that the model has acceptable predictive power and that the 



21 

 

performance is better than that of pure chance (Fielding and Bell 1997, Boyce et al. 2002, 

Hosmer et al. 2013, Bohnett et al. 2020).  

In addition, we tested model predictions using an independent dataset of incidental 

grouse observations collected by MFWP and comparing it with the presence locations from the 

IMBCR dataset. For each MFWP and IMBCR Dusky Grouse observation, we calculated the RSF 

value and the RF value. For each model type (RSF, RF), we used the IMBCR dataset to 

categorize the values into 5 quantile bins of equal size (20% of the data in each bin) that 

represented increasing relative probability of a point being classified as a site used by Dusky 

Grouse (Boyce et al. 2002, Johnson et al. 2006, McNew et al. 2013). The quantile bins 

represented low, medium-low, medium, medium-high, and high probability of relative use. We 

then regressed the observed proportion of grouse locations from the MFWP or test dataset in 

each quantile bin with the observed proportions of grouse locations in each quantile bin from the 

IMBCR or training dataset. We used linear regression to compare the training and testing 

datasets, and we considered a good model fit to have a high R2 value, a slope of 1, and an 

intercept of 0 (Johnson et al. 2006, McNew et al. 2013).  

Calculating Potential Dusky Grouse Habitat in Montana  

We used the quantile bin that correctly predicted 75% of the used points in the training 

and test datasets as our threshold for delineating habitat and created a binary map of habitat and 

non-habitat for each model. To evaluate the accuracy of the threshold, we conducted a simulation 

with 500 iterations, where we calculated the average percent of correctly predicted locations with 

a 95% confidence interval for a subset (80%) of the MFWP dataset. We conducted this 

simulation for the state-wide MFWP data and for each MFWP region.  Because predictive 
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accuracies of both models were similar (see Results) we added the binary maps of our two 

individual models, giving each model equal weight (0.5), to obtain a final map created from the 

ensembled prediction of potential habitat of Dusky Grouse in Montana (a frequency histogram 

approach; Araùjo and New 2006, Le Lay et al. 2010, Stohlgren et al. 2010). The ensemble map 

displayed values ranging from 0–2, where the pixel value was related to the number of models 

that predicted it to be habitat. A value of 2 indicates that both models predicted that pixel to be 

habitat, while a value of 1 indicates that only one model predicted that area to be habitat and a 

value of 0 indicates that both models predicted the area to not be habitat. We considered areas 

with a value of 2 to be high relative probability of use and areas with a value of 1 to be medium-

high relative probability of use.  

We calculated the amount of area within each MFWP administrative region and Montana 

that was predicted to be medium-high and high relative probability of use. We calculated the 

amount of Dusky Grouse habitat in each category by summing the number of pixels predicted to 

be within the categories and multiplying by pixel size (0.0009 km2). The amount of Dusky 

Grouse habitat in Montana and within each MFWP administrative region was calculated as 

ranging between the high relative probability of use category and total potential habitat (the sum 

of both the medium-high and high probability of use categories total habitat.  

Results 

Location Data 

The majority of the used locations for the IMBCR dataset were in MFWP Regions 1 and 

2, while the majority of the presence locations for the MFWP dataset were in Regions 3 and 5 

(Figure 2). Of the regions with presence locations, the fewest presence locations for both datasets 
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were in MFWP Region 4 (Figure 2). There were no used points in the IMBCR dataset in Region 

5 (Figure 2).  

Dusky Grouse Habitat Associations 

From the RSF model we found 7 habitat predictors to impact Dusky Grouse occurrence 

(Table 2). All variables described are not standardized. Two variables had a quadratic 

relationship with relative probability of use: average distance to nearest stream (𝛽1= 7.40 ± 

2.11SE, 𝛽2 = -7.49 ± -2.70) and proportion of northern rocky mountain foothill conifer wooded 

steppe (𝛽1= 216.70 ± 32.83, 𝛽2 = -5557.00 ± 137.60; Table 3, Figure 3). Average slope had a 

positive linear relationship with relative probability of use (𝛽 = 1.03 ± SE 0.26). Proportion of 

inter-mountain basins montane sagebrush steppe (𝛽 = 0.16 ± SE 0.06), and the proportion of 

trees with a height of 16–20 m (𝛽 = 0.32 ± SE 0.08) had positive nonlinear relationships with 

relative probability of use by Dusky Grouse and the proportion of trees with a height of 1–5 m (𝛽 

= -0.63 ± SE 0.24) and distance to road (𝛽 = -0.31 ± 0.14) had negative nonlinear relationships 

with relative probability of use (Table 3, Figure 3). Conditional and marginal R2 values for this 

model were 0.69 and 0.66, respectively, indicating that most of the variation in the response data 

from our model is described by the fixed effects, with only an additional 3% associated with our 

points being clustered along survey routes.   

We also examined the variables of importance from the Random Forest model, and the 

top 10 in decreasing order from most important to least important were: proportion of trees with 

a height of 16–20 m, average slope, average elevation, proportion of Douglas fir forest and 

woodland, proportion of trees with a height of 21–25 m, proportion of montane-foothill 

deciduous shrubland, proportion of montane mixed conifer forest, proportion of area with 30–
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39% shrub canopy cover, proportion of trees with a height of 1–5 m, and proportion of area with 

big sagebrush steppe (Figure 4). We evaluated the marginal impact of a variable on the random 

forest’s predictions using partial dependency plots.  Proportion of trees with a height of 16–20 m, 

slope, elevation, proportion of Douglas fir forest and woodland, proportion of trees with a height 

of 21–25m, proportion of montane-foothill deciduous shrubland, proportion of montane mixed 

conifer forest, proportion of 30–39% canopy shrub cover, and proportion of big sagebrush steppe 

all have positive nonlinear relationships, while proportion of trees with a height of 1–5 m and 

proportion of 30–39% canopy herb cover have negative nonlinear relationships (Figure 5).  

Model Evaluation 

The average AUC values for the RSF and RF models were 0.89 (95% CI: 0.85–0.93) and 

0.87 (95% CI: 0.83–0.92), respectively (Figure 6). The RSF model correctly classified 150/193 

(78%) of the independent grouse locations into the medium-high and high categories of relative 

probability of use. Linear regression produced an intercept close to zero (95% CI: -0.40–0.18), a 

slope of 1.55 (95% CI: 0.45, 2.65), and a high R2 value (0.87), indicating high predictive 

accuracy (Figure 5). The RF model also had high predictive accuracy, with 181/193 (94%) of the 

independently detected Dusky Grouse locations correctly classified into the medium-high and 

high category bins of relative probability of use. Linear regression produced an intercept close to 

zero (95% CI: -0.30, 0.23), a slope of 1.17 (95% CI: 0.30, 2.06), and a R2 value of 0.86 (Figure 

7). Because both models had similarly high predictive accuracy, we used the 60–80% quantile 

bin (medium-high relative probability of use) as a threshold to create two binary maps using the 

frequency histogram method to obtain ensembled estimates of spatially-explicit habitat for 

Dusky Grouse in Montana. The percent of locations correctly classified as habitat from the 
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MFWP data was highest in Region 1 for the RSF model, in Regions 1, 2, and 4 for the RF model 

and ensemble predictions, and was lowest in Region 5 for all three predictions (Table 4).  

Calculating Potential Dusky Grouse Habitat in Montana. Slight differences existed in the 

predicted habitat between the RSF and RF models, with the RSF model having more 

conservative estimates and the RF model predicting higher amounts of habitat across the 

majority of the regions (exception is MFWP Region 3; Table 5, Figure 8). Despite the slight 

differences in the amounts of predicted habitat (a 7% difference in total habitat and non-habitat 

predicted), there were high amounts of agreement (93%) between the RSF and RF models on 

whether an area was predicted habitat or non-habitat. Across both models, MFWP regions 1, 2, 

and 3 had the highest amounts of potential Dusky Grouse habitat (Table 5, Figure 8). Using our 

ensembled map we predicted 83,160–109,125 km2  in Montana to be potential Dusky Grouse 

habitat (Table 5) with the majority of the habitat occurring in MFWP regions 1–5 (Figure 8). Of 

the predicted habitat for the ensembled map, 76% was predicted to have high relative probability 

of use and 24% was predicted to have medium-high relative probability of use (Table 5, Figure 

8).  

Discussion 

We used IMBCR’s dataset of Dusky Grouse observations and an ensemble modeling 

approach to evaluate habitat associations and create statewide predictions of Dusky Grouse 

habitat in Montana. Our RSF and RF models found somewhat different landscape metrics for 

predicting habitat suitability which resulted in slight differences in predicted habitat. However, 

both models had high predictive accuracy and predictions of potential Dusky Grouse habitat 

were generally similar among methods. By using an ensemble of models, created by summing 2 
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binary maps, we identified some uncertainty (areas of disagreement between models) in our 

predictions and created a robust prediction of habitat suitability for Dusky Grouse that can be 

used to inform habitat and population management programs in Montana. 

Agreement between our landscape-level evaluation of habitat associations and previously 

reported field-based habitat associations of Dusky Grouse supports the validity of our predictive 

habitat suitability models (Johnsgard 2016). Dusky Grouse were strongly associated with 

coniferous and mountainous forests, and the coverages of forest height classes were important 

predictors of relative habitat suitability during the breeding season in both models. In addition 

we found relative habitat suitability increased with the coverage of mid-old growth coniferous 

forest (tree heights of 16–25 m; Cade and Hoffman 1993). Also consistent with previous field 

work, our RF model indicated strong positive associations of breeding Dusky Grouse with 

forests dominated by Douglas fir, lodgepole pine, and ponderosa pine (Marshall 1946, Martinka 

1972, Cade and Hoffman 1990). During the reproductive season, Dusky Grouse have also been 

found to prefer more open forests compared to more closed forests during the winter (Stauffer 

and Peterson 1986). Support for partial coverages of three vegetation types (foothill conifer 

wooded steppe, montane foothill deciduous shrubland, and montane sagebrush steppe) suggest 

the importance of transitional vegetation types as Dusky Grouse migrate from high elevation 

forested habitat in the winter to open canopy and herbaceous nesting habitats (Mussehl 1960, 

1963, Zwickel 1973, Johnsgard 2016 ). 

The RSF and RF models had similar, but subtly different, spatial predictions of potential 

Dusky Grouse habitat. Generally, the RF model predicted more hectares of habitat than the RSF 

model. Discrepancies between model predictions (7% of Montana) were largely due to the 
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difference in the importance of the effect of road proximity, with the largest differences in 

roadless areas (e.g. the Bob Marshall Wilderness). The top RSF model included an estimated 

negative effect of distance to road on the relative probability of use, whereas this effect was 

ranked second to last in importance by the RF model resulting in an extremely low impact on the 

RF’s prediction. The supported positive effect of road proximity on Dusky Grouse use is not 

intuitive but may be the result of other correlated variables in the model or how we treated the 

road layer that was then used to estimate distance to road. When we created our road layer, we 

did not differentiate between road types, which included highways, other high-traffic roads, low-

traffic forest service roads, and roads with seasonal closures. The substrate of the roads within 

the road layer also differed and included native material, dirt, gravel, and paved. The majority of 

used points were closer in proximity to forest service roads, that were made of native material or 

dirt and may experience seasonal closures that could result in lower intensity of use. There is 

some support that Dusky Grouse males will display on old logging roads (Martinka 1972), and 

this behavior with the lack of differentiation between forest service roads and other road types 

may have resulted in a positive effect of road proximity that may not hold true for higher-

trafficked roads with non-native surfaces. Despite the areas of disagreement among models, the 

two models agreed 93% of the time, and 76% of the predicted habitat in the ensemble map was 

predicted by both the RSF and RF models, and statewide predictive accuracy of both holdout 

training and independent Dusky Grouse observations was high.  

Transferability of model predictions to unsampled areas outside of Montana are likely 

limited by regional variation in habitat relationships. For example, the coverage of trees with a 

height of 16–20 m was an important predictor of relative habitat suitability in Montana where 
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this tree height corresponded to preferred conifer forests at elevations of 560–3,401 m but may 

not be a good indicator of selection where this relationship does not occur (Araùjo and Guisan 

2006, Randin et al. 2006, Heikkinen et al. 2012). At finer spatial extents (e.g., MFWP 

administrative regions), heterogeneity in landscape metric relationships may reduce the 

predictive accuracy of our statewide models in areas where training data sample sizes were small 

(i.e., where Dusky Grouse observations were few). Though we found the predictive accuracy of 

our individual models to be high (≥77%) for the state of Montana, predictive performance of our 

statewide models varied across MFWP administrative regions. For the RSF predictive map, we 

correctly classified 88% of the independent locations within MFWP regions 1–4, but only 46% 

were correctly classified for Region 5, an area with no presence locations within the training 

dataset. We found that despite the lack of observed grouse locations, our RF model had almost 

twice the predictive accuracy of the RSF model for Region 5 (43% vs 87%). Differences in the 

predictive performance of RSF and RF models within and outside of (e.g., extrapolated) study 

areas further justify an ensemble approach to species distribution modeling (Marmion et al. 

2009, Duque-Lazo et al. 2016). By combining multiple models, ensemble models improve 

accuracy and predictive performance over individual models, depending upon the accuracy of 

the individual models used (Marmion et al. 2009, Stohlgren et al. 2010, Grenouillet et al. 2011). 

Indeed, predictive accuracy improved to 94% in Region 5 when ensembled predictions of habitat 

suitability were used, and overall accuracy for the entire state of Montana improved to 97%. 

Other studies have also found increased robustness and predictive power when using an 

ensemble of models (Marmion et al. 2009, Stohlgren et al. 2010, Latif et al. 2013, Fuller et al. 
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2018) and in our case, it did so despite relatively few presence locations in some administrative 

regions.    

Species distribution models are often used to address many conservation and 

management objectives, including surveillance or monitoring, finding new populations of a 

species, and designating areas for conservation (Guisan and Thuiller 2005, Williams et al. 2009,  

Le Lay et al. 2010, Stohlgren et al. 2010, Crall et al. 2013, Guisan et al. 2013, Fuller et al. 2018, 

Sofaer et al. 2019). For all purposes, it is important that model predictions are accurate and 

identify areas of predictive uncertainty. By using an ensemble of models, we accurately and 

confidently predicted areas of habitat versus non-habitat for Dusky Grouse in Montana, even in 

administrative areas that had few to no presence locations in the training dataset.  

Conclusion 

Our spatially resolute and statewide predictions of relative habitat suitability derived 

from observations produced by the rigorous and randomized IMBCR survey program are 1) an 

advancement on previous ad hoc delineations Dusky Grouse distribution based on incidental 

publicly reported observations, and 2) provide justifiable strata for prioritizing and planning 

Dusky Grouse population monitoring. By using multiple modeling techniques and an ensemble 

approach to prediction, we were able to understand relative habitat use and predict potential 

Dusky Grouse habitat. Our results provide baseline information on Dusky Grouse habitats in 

Montana that can be used to inform conservation planning and future research. Our results can be 

used to inform decisions related to management (e.g., timber harvests, energy permitting) in 

relation to Dusky Grouse. Wildfire and beetle kill are common occurrences in Dusky Grouse 

habitat and having a greater understanding of habitat selection  and a prediction of potential 
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Dusky Grouse habitat may be useful for future research to guide management and can be used to 

target areas for conservation efforts.  In addition, our predictive map can be used to identify 

suitable survey areas for long-term population monitoring. Our study represents a first step in 

developing robust statewide population-level assessments of Dusky Grouse.
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Table 1. Summary of location data. For the IMBCR dataset, the number of used and pseudo-

absent points in total and per MFWP region. For the MFWP incidental data, the number of 

Dusky Grouse (DUGR) observations in total and per MFWP region. NAs are the result of points 

being located either just outside or on the border of Montana.  

Region IMBCR MFWP 

  Used Pseudo-absent DUGR 

Region 1 41 893 26 

Region 2 50 494 22 

Region 3 30 815 86 

Region 4 11 832 12 

Region 5 0 452 47 

Region 6 0 1241 0 

Region 7 0 1171 0 

NA 0 62 1 

Total 132 5960 194 
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Table 2. Definitions for variables in the final RSF habitat model for predicting Dusky Grouse occurrence. We calculated the mean 

statistic or proportion of a habitat characteristic within a 250-m radii circle centered on the survey point. Relationship form represents 

the marginal relationship between a variable and probability of occurrence and is evaluated using a univariate model examining 

potential linear, quadratic, and pseudo-linear threshold relationships using linear equations. 

 

   

Variable 
EVT 

code 
Definition 

Vegetation 

Physiognomy 

Relationship 

Form 
Direction 

Distance to Road N/A Average distance to nearest road (km)  N/A linear negative 

Slope N/A Average slope  N/A 

nonlinear: 

pseudo-linear 

threshold 

positive 

Distance to 

stream 
N/A Average distance to nearest stream (km)  N/A 

nonlinear: 

quadratic 

positive,  

then 

negative 

Foothill Conifer 

Wooded Steppe 

EVT 

7165 

Proportion of northern rocky mountain foothill 

conifer wooded steppe  
Conifer 

nonlinear: 

quadratic 

positive,  

then 

negative 

Montane 

Sagebrush Steppe 

EVT 

7126 

Proportion of inter-mountain basins montane 

sagebrush steppe  
Shrubland 

nonlinear: 

pseudo-linear 

threshold 

positive 

Tree Height 1–5m N/A Proportion of trees with a height of 1–5m  N/A 

nonlinear: 

pseudo-linear 

threshold 

negative 

Tree Height 16–

20m 
N/A Proportion of trees with a height of 16–20m  N/A 

nonlinear: 

pseudo-linear 

threshold 

positive 
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Table 3. Slope estimates for all terms in the final RSF habitat model for predicting Dusky Grouse 

occurrence with 95% confidence intervals. 

Variable 
Estimated 

slope (βi) 

Lower 95% 

Confidence 

Interval 

Upper 95% 

Confidence 

Interval 

Distance to Road -0.31 -0.58 -0.03 

Distance to Stream 7.40 3.26 11.53 

Distance to Stream2 -7.49 -12.79 -2.19 

Foothill Conifer Wooded Steppe 216.70 152.32 281.03 

Foothill Conifer Wooded Steppe2 -5557.00 -5826.86 -5287.36 

ln(Slope + 0.001) 1.03 0.52 1.54 

ln(Montane Sagebrush Steppe + 0.001) 0.16 0.05 0.27 

ln(Tree Height 1–5m + 0.001) -0.68 -1.14 -0.22 

ln(Tree Height 16–20m + 0.001) 0.32 0.15 0.48 

Table 4. Percent of simulated data correctly classified for all of Montana and each MFWP region 

for the independent dataset. Percent correctly classified is calculated with 95% confidence 

intervals for the three models: resource selection function model (RSF), random forest model 

(RF), and the ensemble model. 

Area RSF Model RF Model Ensemble Model 

Montana 77.7 (95% CI: 74.7, 81.2) 93.8 (95% CI: 92.2, 95.5) 96.9 (95% CI: 96.1, 98.1) 

Region 1 96.2 (95% CI: 95.0, 100) 100 (95% CI: 100, 100) 100 (95% CI: 100, 100) 

Region 2 85.6 (95% CI: 81.3, 93.8) 100 (95% CI: 100, 100) 100 (95% CI: 100, 100) 

Region 3 87.2 (95% CI: 83.8, 91.2) 94.3 (95% CI: 92.6, 97.1) 96.5 (95% CI: 95.6, 98.5) 

Region 4 83.6 (95% CI: 77.8, 100) 100 (95% CI: 100, 100) 100 (95% CI: 100, 100) 

Region 5 45.9 (95% CI: 37.8, 51.4) 87.3 (95% CI: 83.8, 91.9) 93.7  (95% CI: 91.9, 97.3) 
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Table 5. Estimated area (km2) of potential Dusky Grouse habitat for Montana FWP administrative regions for the 3 predictive maps. 

The RSF and RF models are divided into a binary map of habitat and non-habitat based on the 60% quantile, while the ensemble map 

is based on an ensemble frequency histogram where consensus between the models on predicted habitat resulted in high relative 

probability of use and areas of unagreed upon predicted habitat between the RSF and RF models resulted in medium-high relative 

probability of use, and consensus between the models on predicted non-habitat resulted in non-habitat. Total habitat is the sum of the 

medium high and high relative probability of use categories.  

Region 
RSF: 

Non-Habitat: 

RSF: 

Habitat 

RF: 

Non-Habitat 

RF:  

Habitat 

E: Non-

Habitat 

E:  

Med. High 
E: High 

E: Total  

Habitat 

Region 1 9489 25045 5402 29133 4714 5463 24357 29821 

Region 2 7112 20195 4498 22809 4073 3464 19770 23234 

Region 3 22589 27509 22669 27429 19077 7104 23917 31021 

Region 4 60602 10725 55435 15892 54751 6535 10041 16576 

Region 5 40171 5456 39471 6157 38538 2566 4524 7089 

Region 6 71873 581 71590 865 71459 544 451 995 

Region 7 78732 351 78944 139 78694 289 100 390 

Total 290570 89862 278008 102423 271306 25966 83160 109125 
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Figure 1. Map of study area with IMBCR survey sites (n = 6,092) and MFWP incidental 

observations of Dusky Grouse (n = 194). At the IMBCR sites, 132 were classified as used 

(Dusky Grouse detected) and 5,960 as pseudo absent (Dusky Grouse not detected). Montana Fish 

Wildlife & Parks divides Montana into seven administrative regions for conservation and 

management. FWP regions are outlined in gray and labeled by region number (regions 1-3 on the 

left, 4-5 in the center, and 6-7 on the right).
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Figure 2. Total number of used (Dusky Grouse detected) locations for the training (IMBCR) and 

the testing (MFWP) datasets for each MFWP region. No used locations were observed in 

Regions 6 and 7 for either dataset. 
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Figure 3. Predicted relative probability of use for covariates in the RSF model with 95% 

confidence intervals (dashed lines) while all other covariates are held at their average value.  
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Figure 4. Variable importance plot for the top 10 important variables from the random forest 

model. Variable importance was calculated as the impact of removing a variable on the model or 

mean decrease in accuracy.   
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Figure 5. Partial dependency plots for the variables of greatest importance for fitting the random 

forest model to evaluate the marginal effect of a variable on the random forest’s predictions. 
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Figure 6. Histogram of the AUC values from the repeated k-fold cross validation for the resource 

selection model (top) and random forest model (bottom). Average AUC for the RSF model was 

0.89 (95% CI: 0.85-0.93) and for the RF model was 0.87 (95% CI: 0.82, 0.92).  
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Figure 7. Proportion of Dusky Grouse locations in five bins of increasing relative probability of 

use values for resource selection function values (top) and random forest model values (bottom) 

that we used to train (n = 132) and test (n = 193; 1 location was outside MT) the different models 

of predicted Dusky Grouse habitat. A good predictive model will assign most of the training and 

test Dusky Grouse locations to medium-high or high categories of predicted use.      
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Figure 8. Predicted Dusky Grouse habitat (red) for the resource selection function map (A) and 

random forest map (B). Areas of consensus and differences (C) in predicted Dusky Grouse 

habitat between the RSF and RF models, where areas both models predict habitat are red, where 

only RSF predicted habitat are purple, areas where only RF predicted habitat are blue, and areas 

where both models predict non-habitat are gray. Predicted Dusky Grouse habitat for the 

ensemble model (D) where red represents habitat with high probability of use, orange represents 

habitat with medium-high probability of use, and gray represents non-habitat. MFWP 

administrative regions are delineated in gray (left top to bottom: Regions 1, 2, 3; center top to 

bottom: Regions 4, 5; and right top to bottom: 6, 7).  
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Introduction 

 Probability of detection plays an important role in the development of field survey 

protocols and species monitoring. The inability of surveyors to perfectly observe individuals 

impacts the utility of unadjusted counts for monitoring wildlife populations (Rosenstock et al. 

2002). If detection probability is not incorporated into abundance estimates and observation error 

varies spatially or temporally, then variation in counts may be the result of changes in abundance 

or changes in detection or both (Rosenstock et al. 2002, Thompson 2002, Farnsworth et al. 

2005). Spatial and temporal variability in detection probability can result from survey conditions 

(e.g., time of day, day of season, weather, habitat) and intrinsic factors (e.g., grouse age, 

breeding status). The exploration of relationships between probability of detection and spatially 

and temporally variable sampling conditions (e.g., environmental conditions, survey protocols) 

can provide insight into advantageous field protocols that maximize the probability of detecting 

individuals of a target species (Jakob et al. 2010, Fregmen et al. 2016). When species occur at 

low densities or are difficult to observe, maximizing detection is important for decreasing 

necessary survey effort for obtaining accurate estimates in occupancy modeling (MacKenzie and 

Royle 2005), and is a concept that may also hold true for obtaining relatively precise and 

unbiased population estimates (Chapter 4).   

 Probability of detection is affected by both availability and perceptibility (Nichols et al. 

2009, Amundson et al. 2014). For an individual to be available for detection, it must be present 

in the survey area, and either be visible or emit an auditory cue (Nichols et al. 2009). 

Perceptibility is the probability that an observer detects an individual given that it is available for 

detection (Nichols et al. 2009, Amundson et al. 2014). Availability for detection during a survey 
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can be affected by a variety of conditions including time of day, seasonality, weather, and 

breeding stage, while perceptibility can be impacted by observer ability, habitat, or background 

noise level. Perceptibility can be improved through training and surveying when background 

noise level is low (Nichols et al. 2009, Amundson et al. 2014). Availability can be improved 

through field methods such as electronic playback or by surveying during times or conditions in 

which individuals are more conspicuous.   

Despite their status as a game species, Dusky Grouse (Dendragapus obscurus) are under-

monitored across most of their range. Dusky Grouse habitat is affected by natural and 

anthropogenic forces such as timber harvest, beetle-kill, wildfire, and climate change (Bendell 

and Elliot 1967, Martinka 1972, Pelren and Crawford 1999, Chan-McLeod 2003, Youtz et al. 

2022). To effectively manage Dusky Grouse habitat and establish appropriate harvest targets, 

accurate and precise estimates of population size and trends are needed. Endemic to coniferous 

and mountainous areas of western North America, Dusky Grouse habitat presents notable 

challenges for managers conducting surveys, especially under spring conditions in years with 

heavy snowpack. In addition, low population densities and naturally low probability of detection 

makes precise abundance estimation difficult and hinders development of feasible and rigorous 

monitoring programs (Aldrich 1963, Rogers 1963, MacKenzie et al. 2005, Zwickel and Bendell 

2004). While little can be done to improve habitat accessibility, increasing the probability of 

detecting a Dusky Grouse when present can decrease the amount of survey effort required while 

maintaining our ability to obtain precise population estimates (Chapter 4).  

 Dusky Grouse perform a breeding display during the spring that makes them more 

conspicuous and thus easier to detect (Blackford 1958, Bendell and Elliott 1967). Males spread 
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their tail feathers, inflate their air sacs, conduct flutter flights, and make several distinct calls that 

include a loud hooting and a much softer repetitive hooting which can be heard up to 100 m 

(Blackford 1958, Mussehl 1963a, Zwickel and Bendell 2004). Females may respond to 

displaying males with a cackle or whinny (Blackford 1963, Stirling and Bendell 1966). 

Consequently, spring counts based largely on displaying males is the most common approach 

used to monitor populations of Dusky Grouse (Zwickel 1990, Sands and Pope 2010), but the 

consistency and frequency of a male’s breeding display may be influenced by time of season and 

day, weather, and the presence of females (Mussehl 1960, Stirling and Bendell 1966, Archibald 

1976, Hannon 1980, Zimmerman and Gutiérrez 2007, Fregmen et al 2016, Farnsworth 2020). 

Alternately, summer brood surveys, which can also be affected by weather (Dienes 2022) may be 

useful for indexing both abundance and productivity. However, the cryptic nature of brood-

rearing females often leads to low detectability, small sample sizes, and thus imprecise 

abundance estimates. (Rogers 1963, Sands and Pope 2010, Hansen et al. 2015).  

Field methods such as electronic playback can affect the efficacy of spring and brood 

surveys by affecting probability of detection. Electronic playback of female grouse calls in the 

spring or chick distress calls in the summer have improved detection of several grouse species, 

including Dusky Grouse, by eliciting vocal and visual responses (Stirling and Bendell 1966, 

Harju 1974, Johnson et al. 1981, Bland 2003, Jakob et al. 2010, Roy et al. 2020). Detectability 

may also be influenced by placement of point or transect survey locations. For ease of 

accessibility, grouse surveys are often conducted along roadsides or trails, where sound may 

transmit farther increasing detection (Yip et al. 2017), increased anthropogenic disturbance may 

alter grouse availability for detection or increased visibility may affect perceptibility. The effects 
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of placing point or transect surveys along roadsides and trails on probability of detection is often 

unevaluated for grouse surveys.   

Although previous research indicates significant effects of time, weather, and other 

environmental conditions on avian detection probabilities (Robbins 1981, Zimmerman and 

Gutiérrez 2007, Conway and Gibbs 2011, Heward et al. 2019, Morelli et al. 2022), few studies 

have investigated the correlates of detection probability for Dusky Grouse. Moreover, peak 

breeding activity varies from late-April through May across the species’ distribution (Zwickel 

and Bendell 2004) affecting timing of both spring and brood surveys, so region-specific 

information is needed for the development of effective monitoring programs. A high response 

rate to playback could significantly increase the probability of detection during surveys by 

increasing availability, but the actual consistency of response may still vary with time of season, 

day, and environmental conditions. Understanding the efficacy of spring and brood counts, the 

effects of electronic playback, and which environmental factors cause variation in response to 

playback can help devise monitoring programs that maximize the probability of detection while 

minimizing survey effort. 

Our goal was to investigate what factors influence detectability of Dusky Grouse in order 

to recommend field-based survey protocols and optimal survey conditions that maximize the 

probability of detecting Dusky Grouse for the purpose of developing a population monitoring 

program. Our objectives were to: 

1) identify field-based protocols that result in the highest relative probability of detecting 

Dusky Grouse, specifically evaluating:  
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a) the relative performance of spring (May–June) surveys of breeding grouse and 

summer (June–July) brood surveys for monitoring populations,  

b) whether the use of electronic playback of grouse calls increased the 

probability of detecting a grouse, and  

c) the impact of survey site placement on probability of detection (e.g., along 

roads, trails, or off-trail) 

2) identify the conditions when probability of detection is highest, specifically evaluating 

a) temporal impacts (e.g., time of breeding season and time of day) and  

b) different weather conditions (i.e., precipitation, temperature, cloud cover).  

Study area 

We conducted Dusky Grouse surveys on public lands (e.g., forest service, state, and 

BLM) across western Montana during spring-summer 2019 and spring 2020–21 within areas 

identified previously as suitable for Dusky Grouse (Chapter 2). The study area incorporated 

mountainous and coniferous habitats ranging from the southern border with Idaho and Wyoming 

to the Canadian border. The Montana Department of Fish Wildlife and Parks (MFWP) divides 

Montana into 7 administrative regions and surveys occurred in Regions 1–5 (Chapter 2; Figure. 

9). Within this broad area, we used an existing habitat suitability model to delineate areas of 

potential Dusky Grouse habitat and generate survey locations (Chapter 2; Figure 9). Based on 

five weather stations across western MT in Kalispell, Missoula, Bozeman, Great Falls, and Red 

Lodge during 201–2021, average April temperature was 5.6 °C, average minimum temperature 

was -10.2 °C, and average max temperature was 24.3 °C. The average temperature during the 

month of May was 10.4 °C, average minimum temperature was -3.8 °C, and average maximum 
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temperature was 27 °C (United States National Weather Service). Precipitation came in the form 

of rain or snow with average rainfall 4.8 cm in April and 7.1 cm in May (United States National 

Weather Service). Average snowfall in April was 25.4 cm and 7.9 cm in May (United States 

National Weather Service). 

Methods 

Field Methods 

We conducted grouse surveys off-trail during 2019 and on roads and trails during 2020 

and 2021, with routes consisting of 5-6 points. The first point for each route was randomly 

generated using ArcMap 10.3.1. During the 2019 pilot season, the first point was placed 300 m 

from a road or trail to facilitate accessibility, with subsequent sites placed 500 m apart in a 

pentagon shape (Figure 10), with the same set of potential routes used during both spring and 

summer. A pentagon shape ensured that the starting point and ending point were relatively close 

together in order to decrease time spent surveying and was similar to other avian survey 

protocols (Farnsworth 2020, Swicegood et al. 2023). Protocols changed from the pilot season to 

later seasons, and during 2020 and 2021, the first point of a route was placed within 150 m of a 

trailhead or along a road where the observer would park ≥ 100 m away. Along the road or trail, 

five subsequent points were spaced 400 m apart to ensure independence for a total of 6 points per 

route (Figure 10). We used the same set of potential routes for both 2020 and 2021. Trained field 

biologists (MFWP employees) and volunteers selected among the randomly generated potential 

routes and conducted point-counts for Dusky Grouse from 10 April–21 May and 17 June–31 July 

in 2019, and 10 April–1 June during 2020 and 2021.  
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During the 2019 pilot season, we surveyed each point three times on three different 

mornings within a 2-week period. Surveys consisted of two 4-minute consecutive point-counts, 

the first without electronic playback and the second with electronic playback played using a 

portable mp3 player or smart phone with a portable speaker (SanDisk 8 GB Clip Jam Mp3 

Player, JBL Charge 3 speaker). During the spring (April–May) we used electronic playback of a 

female Dusky Grouse call (cantus, cackle, and whinny) to increase the probability of detecting 

both male and female Dusky Grouse, and in the summer (June–July) we used a chick distress 

call to elicit responses from females with broods. Playback recordings consisted of 30 seconds of 

playback, then 30 seconds of silence, repeated for the entire 4-minute period.  

During 2020 and 2021, two point-counts were conducted at each point as the observer 

traveled from the start to the end of the route, which were located along roads and trails, and then 

two additional point-counts at each point as the observer traveled from the end to the beginning 

of the route, allowing four point-counts to be conducted during a single morning. A 10-minute 

break occurred between the last point between the initial and return visits. Each pair of point-

counts was conducted consecutively with ≤ 1 minute between them, and each point-count was 

treated as a replicate survey visit. During 2020 and 2021, all point-counts were conducted in the 

spring using electronic playback of female cantus and cackle calls.  

During all three years, all Dusky Grouse observations, visual or auditory, were recorded. 

Observers were trained to keep track of individual birds during a single point-count and to not 

record the same individual twice. Point count surveys were conducted between dawn and 11:00 

on days without precipitation and wind speed <19 km hr-1. Total time needed to complete each 
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route varied between 3–7 hours. If light precipitation began during the survey, surveys were 

completed. 

 We recorded day since surveys started, start time of survey (used to calculate minutes 

since sunrise), background noise level, and weather conditions at each site for each pair of point-

counts. Background noise level, including that from road traffic and streams, was categorized as: 

0 = no background noise, 1 = slight background noise, but no auditory impairment, 2 = some 

background noise and some auditory impairment, and 3 = deafening and total auditory 

impairment. We recorded average temperature and wind speed using a handheld weather meter 

(Kestrel model 2000, Kestrel Meters, Boothwyn, PA), cloud cover (0–15% , 16–50%, 51–80% , 

and 81–100%), and precipitation conditions (fog, rain, snow, or none).  

Estimating Probability of Detection 

Evaluation of Field-based Survey Protocols. To evaluate the effectiveness of spring (10 

April–21 May) versus summer (17 June–31 July) surveys, we compared number of surveys 

completed, probability of detection of Dusky Grouse, and the frequency of surveys across the 

sampling period using the 2019 surveys. To estimate probability of detection during each 

sampling period, we evaluated single-season N-mixture models (Royle 2004) using the pcount 

function in the R package ‘unmarked’ (Fisk and Chandler 2011, R Core Team 2017). We 

parameterized two models for each sampling period with constant probability of detection and 

abundance: point-counts without electronic playback and point-counts with electronic playback. 

We compared the estimates of probability of detection between the two models for each 

sampling period to evaluate the effects of electronic playback on probability of detection.  
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We evaluated potential overdispersion in our observation data by evaluating and comparing 

models with different abundance distributions: Poisson, a negative binomial, and a zero-inflated 

Poisson (Kéry and Schaub 2012, Kéry and Royle 2016). We evaluated and compared support for 

models using Akaike’s Information Criterion (AIC) to identify the statistical distribution with the 

most support, which we subsequently used for estimating probability of detection (Burnham and 

Anderson 2002, Kéry and Schaub 2012). 

To compare route types, we estimated probability of detection for spring surveys 

conducted with electronic playback using single season N-mixture models (Fisk and Chandler 

2011, R Core Team 2017). We estimated probability of detection for off-trail surveys (2019 data) 

separately from the road and trail surveys (2020 and 2021 data) due to differences in protocols. 

We used route type and year as covariates for modeling probability of detection for the road and 

trail surveys.  

Evaluating Effects of Survey Conditions. To evaluate the impacts of survey day, minutes 

since sunrise, and weather on probability of detection, we used the data from the spring surveys 

in 2020 and 2021. We evaluated single-season N-mixture models (Royle 2004) using the pcount 

function in the ‘unmarked’ package in R (Royle 2004, Kery 2008, Fisk and Chandler 2011, Kery 

and Schaub 2012, R Core Team 2017). We evaluated our N-mixture models using a Poisson 

distribution for abundance and examined overdispersion (𝑐)̂ using the N-mixture goodness of fit 

test function, Nmix.gof.test (Mazerolle 2020). 

We standardized our continuous covariates by subtracting the mean and dividing by the 

standard deviation calculated over all four visits. We evaluated pairwise correlation among 

covariates using Pearson’s correlation coefficients, considering |r| > 0.70 to indicate correlation. 
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Prior to model fitting, we examined the possibility of nonlinear relationships between probability 

of detection and two covariates: minutes since sunrise and day of sampling period (Bendell and 

Elliot 1967, Zwickel and Bendell 2004, Farnsworth 2020). We used univariate models to test for 

linear and nonlinear (quadratic) relationships, evaluating model support using AIC (Burnham 

and Anderson 2002). We also hypothesized that day may have an interactive relationship with 

minutes since sunrise and thus evaluated both additive and interactive models. We again 

evaluated model support using AIC (Burnham and Anderson 2002).  

We then evaluated model support for 12 different a priori models based on hypotheses 

about the impacts of day, minutes since sunrise, weather conditions, and noise level on 

probability of detection, while parameterizing a constant model that estimated an average 

abundance for all sites. We included background noise level in all but the null model of detection 

probability. We included a fully parameterized model for probability of detection as well as 

combinations of different weather conditions with minutes since sunrise, day, and noise level. 

We evaluated model support using AIC, and then used the top model to predict the effects of 

survey conditions on probability of detection (Burnham and Anderson 2002). We also calculated 

the days and minutes since sunrise that fell in the 90th percentile of their respective probability of 

detection in order to present a range of ideal survey times and dates.  

Results 

We surveyed 90 and 110 points during the spring and summer, respectively, during the 

pilot season in 2019. Most (98%) sites during each sampling period were surveyed three times. 

The majority (95%) of our Dusky Grouse observations during spring 2019 were auditory. Few 

Dusky Grouse observations occurred during summer 2019. During 2020 and 2021, we conducted 
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four visits and recorded covariates at a total of 2,286 unique points, with 837 points (37%) 

visited during both years, with the result of 3,123 point-count sets of four-counts or a total of 

12,492 point-counts. During springs 2020 and 2021, 79% of our Dusky Grouse observations 

were purely auditory with an additional 10% both auditory and visual.  

 For the 2019 data, a Poisson distribution was most supported, indicating no 

overdispersion (Appendix C). For the 2020 and 2021 data, the data also did not appear 

overdispersed (�̂� = 1.4), and therefore, we continued to use a Poisson distribution.  

Spring v. Summer Sampling 

More points were surveyed during the summer sampling period (110) than during the 

spring sampling period (90) due to increased accessibility and availability of MFWP wildlife 

biologists. Survey effort during the spring sampling period was concentrated at the end of the 

sampling period when accessibility was highest versus in summer when sampling was more 

evenly distributed (Figure 11). Probability of detecting a Dusky Grouse was much lower in the 

summer (approximately 0) than in the spring (> 0) with or without the use of electronic playback 

(Table 6).  

Effect of Electronic Playback 

The estimated probability of detection was greater when using electronic playback during 

spring surveys (0.28; 95% CI: 0.13, 0.50) versus when not used (0.09; 95% CI: 0.01, 0.48; Table 

6, Figure 12). In summer surveys for both point-counts with and without electronic playback, the 

estimated probability of detection was similar (0.0002; 95% CI: 0,1 for both). The lack of 

precision in the confidence intervals of the estimates is a result of having few detections. Only 4 

grouse were observed during point counts without playback, and 4 during point counts with 



56 

 

playback, suggesting that the use of electronic playback during the summer surveys did not 

improve the probability of detecting Dusky Grouse (Table 6).   

Comparison of Road, Trail, and Off-trail Point-Count 

Surveys 

The probability of detection was not significantly different across years or survey type 

(off-trail, road, trail; Table 7, Figure 13). Off-trail in 2019, average probability of detection was 

0.28 (95% CI: 0.13–0.50). In 2020 and 2021, probability of detection for both road (p = 0.32, 

95% CI: 0.27–0.38, p = 0.38, 95% CI: 0.33–0.43 respectively) and trails (p = 0.42, 95% CI: 

0.37–0.48, p = 0.36, 95% CI: 0.32–0.41 respectively) was similar. 

Effects of Survey Conditions 

When evaluating pairwise correlation, we did not find any of our continuous variables to 

be correlated (|r| > 0.70; Appendix D). Because of our strict sampling protocol, variability in 

precipitation and wind speed was low, with 90% of the precipitation category classified as none 

and mean wind speed during surveys measured at 1.42 km/hr (SD = 1.95). Estimated cloud cover 

across surveys was more variable with 44% of cloud cover classified as 0–15%, 11% classified 

as 16–50%, 11% classified as 51–80%, and 34% classified as 81–100% cloud cover. 

Temperature varied from -14.1 to 26.1 with average temperature during surveys measured at 

6.8°C. The majority of background noise (77%) was ranked at a 0 or 1. Average minutes since 

sunrise during surveys was 134 (SD = 72). Average survey date was May 14th (SD = 11). We 

found that an additive model for minutes and day had more support than an interactive model 

(Table 8). The top model within our candidate set contained minutes since sunrise, day of 
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sampling period, noise level, cloud cover, and temperature (Table 9). The top model was 

followed by the fully parameterized model for probability of detection (Table 9).  

Except for when it is the variable of interest, we held temperature, minutes since sunrise, 

and day during the sampling period at average, cloud cover at 0-15%, and background noise 

level at 0. After accounting for the other variables, temperature had a positive linear relationship 

with probability of detecting a Dusky Grouse (𝛽= 0.12, 95% CI: -0.02, 0.25), but the confidence 

intervals for the estimated beta coefficient overlapped zero indicating some uncertainty in this 

effect (Table 10, Figure 14). We found that probability of detection was highest on clear days 

when cloud cover was 0–15% and when background noise level was low (Table 10, Figures 15, 

16). For cloud cover we found that probability of detection was greater for 0-15% cloud cover, 

but then once 0-15% was surpassed there was little difference in probability of detection between 

the categories (Figure 15). We found strong support for a quadratic relationship between 

probability of detection and minutes since sunrise 𝛽1= 0.43, 95% CI: 0.04, 0.82, 𝛽2 = -0.75, 95% 

CI: -1.16, -0.34) and between probability of detection and day of sampling period (𝛽1 = 1.31, 

95% CI: 0.58, 2.04, 𝛽2 = -1.28, 95% CI: -1.99, -0.57; Tables 10, 11, 12). Probability of detection 

was maximized at 86 minutes past sunrise with our predicted optimal window of time from 9–

162 minutes post sunrise (Figure 17). For day of sampling period, probability of detection was 

maximized on day 34 (May 13th; Figure 18). We estimated the optimal sampling period to be 

between 3 May–23 May (Figure 18). 

Discussion 

Our study identifies and evaluates the effects of survey methodology and environmental 

conditions on the detection probability of Dusky Grouse. We found that electronic playback of 
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female calls during spring substantially increased the probability of detecting Dusky Grouse. We 

did not find route type to impact probability of detection. In addition, we found that noise level, 

cloud cover, temperature, day of survey season, and minutes since sunrise also affect the 

probability of detecting Dusky Grouse in the presence of electronic playback. Precipitation and 

wind speed were uninformative covariates, likely because they were already controlled for 

through survey protocol and therefore there was little variation in these variables. 

Although spring and summer surveys have previously been used for monitoring 

populations of grouse (Sands and Pope 2010), we found that our estimates of probability of 

detection during the summer were uninformative due to large confidence intervals as a result of 

few grouse detections, thereby limiting the utility of summer surveys for population monitoring. 

We used the same survey locations for both spring and summer sampling, and this may have 

resulted in a mismatch between summer survey locations and brood-rearing habitat potentially 

resulting in the low probability of detection during summer surveys. Nevertheless, efforts to 

increase detection probability during the summer by using electronic playback were 

unsuccessful. These results are contrary to studies that found that chick distress calls often elicit 

an auditory or visual response from a hen with a brood (Stirling and Bendell 1966, Harju 1974). 

However, electronic playback of female calls substantially increased the probability of detecting 

grouse during spring surveys by increasing males calling and conducting flutter-flights and 

females cackling which is consistent with previous work (Stirling and Bendell 1966, Harju 1974, 

Farnsworth 2020).  

Background noise, the majority of which was the result of river noise or anthropogenic 

noise (roads, planes, trains) had a strong impact on probability of detection and most likely 
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affected perceptibility as the majority of our observations were auditory. Consistent with our 

results, background noise is considered to negatively affect the ability of an observer to hear or 

detect grouse (Roy et al. 2020, Riley et al. 2021).  

 Other survey conditions may have affected availability. Cloud cover has had mixed 

effects on other grouse species, with some responding positively to increased cloud cover while 

others respond negatively (Evans et al. 2007, Farnsworth 2020). Consistent with previous 

research, we found Dusky Grouse to respond negatively to increasing cloud cover (Farnsworth 

2020). The effect of temperature on breeding displays also varies for gallinaceous species. 

Eurasian woodcock display behavior increases as minimum temperature increases; for ruffed 

grouse, initial morning temperature has not been shown to be correlated with probability of 

detection, although change in temperature during the transect survey has been (Zimmerman and 

Gutiérrez 2007, Heward et al. 2019). We found that the probability of detecting a Dusky Grouse 

increased slowly as temperatures increased, but the exact impact of temperature on probability of 

detection is uncertain given that the confidence intervals for the coefficient estimate slightly 

overlapped zero. Both wind and precipitation were successfully controlled for within the survey 

protocol.  

 In addition to weather, we found probability of detection for Dusky Grouse to be strongly 

related to date (day of period) and time (minutes since sunrise). Peaks in breeding behavior for 

both time of day and season are expected when electronic playback is not used. Electronic 

playback helps increase detection and potentially homogenize detectability across surveys (Jakob 

et al. 2010). When electronic playback was used in Utah, researchers found a slightly positive 

linear relationship between probability of detection and date when playback was used versus a 
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quadratic relationship when electronic playback was not used (Farnsworth 2020). Contrary to 

those results, we found that when electronic playback was used there was still a quadratic 

relationship between probability of detection and day. Hypothesizing that probability of 

detection is positively linked with spikes in breeding behavior, such as breeding display or calls 

(female cackle, male hooting), we would expect that peak detection also aligns with peak 

copulation and breeding display behavior. Back calculating from peak hatch date, which varies 

from the end of May to the beginning of July across Nevada, Colorado, Utah, Montana, and 

British Columbia, peak breeding behavior of Dusky Grouse has historically occurred from the 

end of April through the middle of May (Zwickel and Bendell 2004). Historic studies (> 50 years 

ago) in western Montana in the Bitterroot and Bridger mountains found peak hatch to occur in 

the third week of June, and peak breeding activity between the last week of April and first week 

of May (Mussehl 1960, 1963b). We found our preferred survey window to be later than those 

suggested by past studies in Montana, with our highest detection occurring between May 3–May 

23, with a peak on May 13th. Differences in peak breeding activity between studies in Montana > 

50 years ago and our current study could be the result of changes in climate and vegetation, 

inaccuracies in the back-calculating from peak hatch dates to peak copulation, or that peak 

copulation doesn’t perfectly align with peak breeding displaying when electronic playback is 

used.  

In other grouse studies, peak detection occurred at sunrise or slightly before sunrise with 

and without electronic playback (Bendell and Elliot 1967, Fregmen et al 2016, Farnsworth 2020, 

Roy et al. 2020). Our study found peak detection to occur 86 minutes, or 1.5 hours past sunrise. 

While it is possible that the later peak in detection is the result of increased perceptibility due to 
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increased visibility from increased light, most detections during our surveys were auditory, 

making this unlikely. It may also be that Dusky Grouse are more responsive to playback during 

the first part of the morning but may not display unprompted as frequently post-sunrise. We 

found the ideal survey window to occur between 9 and 162 minutes past sunrise, indicating that 

there is a broad period of time in which playback surveys may be conducted.  

Management Recommendations 

Understanding factors that impact probability of detection helps managers develop 

effective survey protocols that are sustainable for long-term monitoring of Dusky Grouse. While 

survey routes along roads and trails were more logistically feasible compared to off-trail and type 

of survey route did not affect probability of detection, impacts of roads on trails on abundance 

should also be explored before definitive recommendations on route type are made. To maximize 

probability of detection, we recommend surveying in the spring using electronic playback, 

during periods of peak breeding display behavior or response to playback, which for Dusky 

Grouse in Montana occur from 3 May–23 May, from sunrise to approximately 2.5–3 hours post 

sunrise, and on clear, sunny days with low wind and no precipitation. When incorporating 

probability of detection into abundance estimates, we recommend modeling detection as a 

function of day during the sampling period, minutes since sunrise, background noise level, cloud 

cover, and temperature.    
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Table 6. Probability of detection for spring and summer sampling periods for point counts 

conducted with and without electronic playback with 95% confidence intervals.  

Period Detected Spring Summer 

Without playback 0.09 (0.01– 0.48) 0.002 (0–1) 

With playback 0.28 (0.13– 0.50) 0.002 (0–1) 

Table 7. Estimates of probability of detection with 95% confidence intervals for point counts 

conducted along different transect types: off trail (2019, n = 90), on roads (2020, n = 845; 2021, 

n = 744), and trails (2020, n = 803; 2021, n = 731). 

Route Type Year Estimate SE 95% Confidence Interval 

Road 2020 0.32 0.03 0.27–0.38 

Road 2021 0.38 0.03 0.33–0.43 

Trail 2020 0.42 0.03 0.37–0.48 

Trail 2021 0.36 0.02 0.32–0.41 

Off-trail 2019 0.28 0.10 0.13–0.50 

Table 8. Model support using AIC for evaluating the relationship between additive verse 

interactive models for minutes since sunrise and day during the sampling period and the 

probability of detecting Dusky Grouse. 

Models # Parameters AIC delta AIC 
Model 

Weight 

Minutes + Days 6 5072.47 0.00 0.92 

Days x Minutes 10 5077.29 4.82 0.08 
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Table 9. Model support for hypothesized relationships between detection and survey conditions. All models are evaluated with 

constant abundance.. 

Models # Parameters AIC delta AIC 
Model 

Weight 

Minutes + Days + Noise Level + Cloud Cover + Temp 13 4954.56 0.00 0.76 

Minutes + Days + Noise Level + Cloud Cover + Temp + Precipa + 

Wind 17 4956.90 2.34 0.24 

Minutes + Days + Noise Level 9 4984.02 29.46 0.00 

Minutes + Noise Level 7 4991.29 36.73 0.00 

Cloud Cover + Noise Level 8 4995.87 41.30 0.00 

Days + Noise Level 7 5009.01 54.45 0.00 

Wind + Noise Level 6 5016.12 61.56 0.00 

Noise Level 5 5017.95 63.39 0.00 

Precipa + Noise Level 8 5019.02 64.45 0.00 

Temp + Noise Level 6 5019.26 64.70 0.00 

Null 2 5112.63 158.07 0.00 
 

aPrecipitation
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Table 10. Estimates of coefficients and their 95% confidence interval for standardized covariates 

from the top model, with constant abundance and survey conditions affecting probability of 

detection. Reference level for noise level is 0 and for cloud cover is 0-15%. 

Survey Condition Estimate SE Lower 95% CI Upper 95% CI 

Int -0.22 0.09 -0.40 -0.03 

Minutes 0.43 0.20 0.04 0.82 

Minutes Squared -0.75 0.21 -1.16 -0.34 

Days 1.31 0.37 0.58 2.04 

Days Squared -1.28 0.36 -1.99 -0.57 

Temperature (°C) 0.12 0.07 -0.02 0.25 

Cloud Cover: 16-50 -0.83 0.19 -1.19 -0.46 

Cloud Cover: 51-80 -0.84 0.20 -1.23 -0.45 

Cloud Cover: 81-100 -0.47 0.14 -0.74 -0.20 

Noise Level: 1 -0.39 0.12 -0.62 -0.16 

Noise Level: 2 -1.57 0.20 -1.96 -1.18 

Noise Level: 3 -3.04 0.63 -4.27 -1.82 

Table 11. Model support using AIC for evaluating linear and quadratic relationships between 

probability of detection of Dusky Grouse and minutes since sunrise.  

Models # Parameters AIC 
delta 

AIC 

Model 

Weight 

Minutes Quadratic 4 5086.50 0.00 0.98 

Minutes Linear 3 5094.62 8.12 0.02 

Table 12. Model support using AIC for evaluating linear and quadratic relationships between 

probability of detection of Dusky Grouse and day during the sampling period 

Models # Parameters AIC 
delta 

AIC 

Model 

Weight 

Days Quadratic 4 5096.55 0 0.9988 

Days Linear 3 5110.08 13.52 0.0012 
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Figure 9. Habitat suitability model for Dusky Grouse habitat in Montana. Areas in orange 

represent medium-high relative probability of use and areas in red represent high-relative 

probability of use. Black lines and numbers represent the 7 different MFWP administrative 

regions.  

 

Figure 10. Different route types. (A) pentagon shaped transect used in 2019. (B) line transect 

with six points used in 2020 and 2021.
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Figure 11. Daily survey effort represented by the number of surveys completed each day for Dusky Grouse surveys conducted in 

spring and summer 2019. 
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Figure 12. The impacts of electronic playback on probability of detecting a Dusky Grouse with 

95% confidence intervals. Data from spring 2019 Dusky Grouse surveys, where female calls 

were used to elicit male Dusky Grouse responses.  

 
Figure 13. Probability of detection estimates evaluated using single season N-mixture models of 

Dusky Grouse with 95% confidence intervals for point counts conducted along different route 

types: off trail (2019, n = 90), on roads (2020, n = 845; 2021, n = 744), and trails (2020, n = 803; 

2021, n = 731). Data for the off-trail transects come from the 2019 pilot year surveys conducted 
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in MFWP region 3. Data for the road and trail transects comes from the 2020 and 2021 surveys 

conducted across western Montana. 

 

Figure 14. Coefficients of standardized survey conditions with 95% confidence intervals, where 

survey conditions affected probability of detection and abundance was held constant. Days = day 

during the sampling period, Minutes = minutes since sunrise. The reference level for cloud cover 

is 0-15%, and for noise level is 0. 
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Figure 15. Estimated probability of detection for different cloud cover categories: 0-15% cloud 

cover, 16-50% cloud cover, 51-80% cloud cover, while minutes since sunrise, day during the 

sampling period, and temperature were held at average, and background noise was 0.  

 

 

Figure 16. Estimated probability of detection for different noise level categories: 0 = no 

background noise, 1 = slight background noise, but no auditory impairment, 2 = some 

background noise and some auditory impairment, and 3 = deafening and total auditory 
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impairment. Minutes since sunrise, day during the sampling period, temperature were held at 

average, and cloud cover was held at 0-15%.  

 

Figure 17. Estimated probability of detection for minutes since sunrise while day during the 

sampling period and temperature are held at average. Cloud cover is held at 0-15%, and 

background noise is held at 0.
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Figure 18. Estimated probability of detection for day during the sampling period while minutes 

from sunrise, and temperature are held at average. Cloud cover is held at 0-15%, and background 

noise level is held at 0. Maximum probability of detection is on day May 13th.  
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Introduction 

Unbiased and precise estimates of abundance are crucial for effective conservation, 

management, and understanding ecological relationships (Joseph et al. 2009, Weiser et al. 2019, 

Neubauer and Sikora 2020). Estimates of abundance are used to define conservation priorities, 

assess whether population objectives are being met and evaluate the impact of management 

actions (Weist et al. 2019, Doser et al. 2021). Without accurate estimates, limited resources can 

be used inefficiently, and managers may be unable to identify population declines in a timely 

manner (Sillett et al. 2012). Population monitoring is especially important for game species 

where changes in abundance may impact hunting quotas and other aspects of species’ 

management (Jakob et al. 2014). Given high costs and the large amount of effort needed to 

obtain long-term data on abundance, it is important that monitoring programs are well planned 

and able to make efficient use of limited resources while still achieving target goals (Weiser et 

al. 2019, Anderson and Steidl 2019, Kidwai et al. 2019).  

Dusky Grouse (Dendragapus obscurus) are an under-monitored upland game species 

found in coniferous and mountainous areas of western North America from New Mexico to 

central Yukon (Aldrich 1963, Zwickel and Bendell 2004). Despite their status as a game species 

and concerns over the potential influences of environmental disturbances (e.g., logging, wildfire, 

beetle infestations) on Dusky Grouse habitat, populations are poorly or inconsistently monitored 

across their range (Bendell and Elliot 1967, Martinka 1972, Pelren and Crawford 1999, Chan-

McLeod 2003, Youtz et al. 2022). Current standardized multispecies avian surveys (e.g., 

Breeding Bird Survey) are inadequate for monitoring Dusky Grouse because their survey 

protocols do not yield sufficient Dusky Grouse observations to produce precise and unbiased 
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estimates of populations trends (Sauer et al. 2020). Dusky Grouse occur in remote and often 

difficult to access habitats, have low population densities, and low detection rates which has 

made population monitoring inherently difficult (Rogers 1963) and may limit potential survey 

and analytical methodologies.  

To date, population monitoring of Dusky Grouse has been based on either 1) count-based 

surveys during the spring breeding season, 2) brood counts during the summer, or 3) reported 

hunter harvests in the fall (Rogers 1963, Bernales et al. 2017, Espinosa et al. 2018, Gates 2019, 

New Mexico Department of Game and Fish 2020). Site placement along roads is common for 

spring and brood counts but may also result in biased estimates due to non-random placement of 

survey sites, roadside habitat being more representative of edge habitat than interior or non-

roadside habitat, and greater anthropogenic disturbance (Rogers 1963, Hanowski and Niemi 

1995, Betts et al. 2006, Buckland et al. 2008, Sands and Pope 2010). Recent research has shown 

that spring surveys using electronic playback to increase detection are most effective for 

detecting Dusky Grouse (Chapter 3), but quantitative assessments of the performance of survey 

protocols (route type, number of sites and visits) and analytical approaches for monitoring Dusky 

Grouse are lacking and are needed to inform best management practices for Dusky Grouse 

population monitoring. 

Count-based surveys of grouse may provide an unbiased index of relative population size 

across time and space in the presence of random sampling, consistent observation error across 

time and space, and if counts are positively correlated with abundance. (Pollock et al. 2002, 

Rosenstock et al. 2002). As it is unlikely that detection error is constant across space or time, it is 

important to measure this error to adjust estimates of abundance; otherwise observed changes in 
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counts may be the result of changes in probability of detection, changes in abundance, or both 

(Rosenstock et al. 2002, Farnsworth et al. 2005). The expansion of analytical models that 

estimate and incorporate the probability of detection (p) into abundance estimation with 

unmarked animals has advanced population monitoring programs for black grouse (Lyrurus 

tetrix), red grouse (Lagopus lagopus scoticus), red-legged partridge (Alectoris rufa), rock 

ptarmigan (Lagopus muta), and sage grouse (Centrocercus urophasianus; Warren and Baines 

2011, Franceschi et al. 2014, Jakob et al. 2014, McCaffery et al. 2016) and shows promise for 

the monitoring of Dusky Grouse.  

Two classes of hierarchical models that can be used to obtain unbiased estimates of 

abundance of unmarked grouse include, 1) those that estimate detection probabilities through 

repeated counts during a period of population closure, and 2) those that adjust counts based on 

estimated distance-decay functions in detection probability (Kéry and Royle 2016). Of the first 

type, N-mixture models (aka binomial-Poisson mixture models) are a class of hierarchical 

models that use simple counts replicated spatially and temporally within a period of closure to 

estimate probability of detection (p) and abundance (Royle 2004, Kéry and Royle 2016). The 

simplicity and relative inexpense of count-based survey protocols needed for this model implies 

utility over large spatial and temporal scales consistent with statewide and regional application 

(Kéry and Royle 2016). Additionally, N-mixture models allow for the inclusion of spatial and 

temporal covariates to evaluate questions related to 1) survey protocol effects on detection 

probabilities, 2) site-specific effects of habitat conditions or treatments on local abundance, and 

3) spatio-temporal effects of climate and management on population size and trajectories 

(Romano et al. 2017, Katayama et al. 2020, Dinkins et al. 2021) even when data is sparse, 



77 

 

 

contains many zeros, and when detection probability is low (Yamaura 2013, McCaffery et al. 

2016).  

Like all statistical models, N-mixture models have critical assumptions that must not be 

severely violated to ensure the estimator remains unbiased: 1) counts occur within a period of 

population closure, 2) all observation errors are negative; no false positives, 3) detection 

probability is constant for all individuals within a site during a survey, 4) individuals are detected 

independently of other individuals, and 5) the distributions of abundance and detection 

probability are adequately described by their chosen parametric distribution (Kéry and Schaub 

2012, Kéry and Royle 2016). Estimates of abundance can be extremely sensitive to violations of 

model assumptions (Barker et al. 2018, Duarte et al. 2018, Knape et al. 2018, Link et al. 2018). 

Nevertheless, N-mixture models yield accurate estimates abundance when assumptions are 

reasonable (Basile et al. 2016, Kéry 2018, Ficetola et al. 2018, Duarte et al. 2018).  

A second class of abundance models uses measured observation distances, rather than 

repeat surveys, to estimate p. Distance sampling models are based on the idea that the probability 

of detecting an individual decreases with increasing distance from the observer and that the 

chosen distance-decay detection function can be used to estimate the proportion of individuals 

unidentified during a survey (Buckland et al. 2001, Rosenstock et al. 2002, Buckland et al. 

2015). Recent extensions of the distance sampling model (e.g., hierarchical distance sampling) 

allow models to incorporate covariates for abundance and detection and accommodate temporary 

emigration (e.g., availability to be detected; Kéry and Royle 2016). Hierarchical distance 

sampling (HDS) has been used to estimate density, model relationships between density and 

habitat associations, and explore relationships between detection and habitat associations and 
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survey conditions for a variety of species including butterflies, endangered bumblebees, lizards, 

songbirds, and game birds (Hamm 2013, Furnas et al. 2019, Sullins et al. 2019, McNeil et al. 

2019, Reidy et al. 2021, Lewis et al. 2022). Some extensions of hierarchical distance sampling 

require additional visits for the estimation of availability/temporary emigration, but to 

incorporate covariates for abundance and detection, only one visit is required (Royle and Kéry 

2016). This is an advantage over N-mixture models where multiple visits are needed (Royle and 

Kéry 2016). On the other hand, the data required for N-mixture models is less intensive as it does 

not require accurately measuring distances to individuals which can be difficult for auditory 

signals (Scott et al. 1981, Simons et al. 2007, Buckland et al. 2015). In addition, distance 

sampling requires that a minimum of 60-100 detections at a variety of distances are obtained for 

estimating the distance-decay function, which may decrease their utility in the face of low 

detection or abundance (Buckland et al. 2001, Rosenstock 2002, Rusk et al. 2007, Franceschi et 

al. 2014). 

Distance sampling also produces unbiased estimates if assumptions are reasonable.   The 

assumptions of distance sampling are 1) animals are distributed uniformly in space and 

independently of the transects or point locations on which the observations are made, 2) 

probability of detection is a function of distance and detection is perfect at a distance of zero, 3) 

individuals are detected at their original locations, and 4) distances are measured without error 

(Buckland et al. 2001, Thomas et al. 2010, Buckland et al. 2015, Kery and Royle 2016).  

Expanding on hierarchical distance sampling and time removal is a new model: 

hierarchical distance sampling with time removal (hereafter time-removal HDS). Time-removal 

HDS, allows hierarchical distance sampling to incorporate temporary emigration without 
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needing multiple visits by using time removal to estimate availability. Distance sampling alone 

without repeated visits is only able to estimate perceptibility (probability of detection given 

availability). If availability is not estimated, assumptions for distance sampling may be violated, 

resulting in biased abundance estimates (Amundson et al. 2014). Time removal models by 

themselves are only able to estimate availability and perceptibility combined and are unable to 

separate the two processes (Farnsworth et al. 2002, Nichols et al. 2009). Time-removal HDS 

allows the separate estimation of availability and perceptibility and is able to incorporate 

covariates for both components of detection, as well as covariates for abundance. Model 

assumptions include those for distance sampling as well as 1) individuals are identified correctly 

in reference to species and no double counting, 2) availability and perceptibility are independent, 

3) surveys occur within a period of closure, and 4) all individuals within a population are present 

at a site during the survey so that probability of presence equals 1 (Nichols et al. 2009, 

Amundson et al. 2014). Similar to the other presented models, time-removal HDS also produces 

unbiased estimates if assumptions are reasonable. 

An effective population monitoring program must 1) have a clear goal and specific 

objectives, 2) provide precise and unbiased estimates or indices of population size or trends, 3) 

sufficient statistical power to achieve objectives, 4) be implementable and achievable, and 5) be 

able to quickly provide clear and understandable results to the intended audience (Gibbs et al. 

1999, Pollock et al. 2002, Witmer 2005). A clear objective must encompass the purpose of the 

monitoring program, how the results will be used, what parameters will be estimated, and the 

level of accuracy and precision desired (Pollock et al. 2002, Witmer 2005). Survey designs, 

sampling methods, and statistical analyses need to be evaluated for their ability to work with the 
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species’ ecology, adjust for imperfect detection, account for spatial variation in abundance, and 

produce unbiased and precise estimates of abundance (Pollock et al. 2002, Witmer 2005). The 

chosen survey protocol and analytical method should be evaluated using a power analysis and 

then reevaluated as more data becomes available to ensure that recommended methods are able 

to meet the objectives (Gibbs et al. 1999). The feasibility of a monitoring program must also be 

considered with regard to number of personnel, cost, accessibility of survey sites, and survey 

effort (i.e., number of sites and visits required). The outcome of the monitoring program should 

be easily interpretable by conservationists and managers.  

Based on discussions with wildlife managers at Montana Department of Fish, Wildlife, 

and Parks, our goal was to design and implement a population monitoring program for Dusky 

Grouse that yields unbiased and precise estimates of annual abundance with a coefficient of 

variation (CV) of ≤ 15% and allows wildlife managers to detect biologically meaningful changes 

in population size over timeframes relative to management. We addressed this goal through the 

following sequential objectives: 

1. Use simulations to identify appropriate field survey protocols (number of sites and 

visits) for evaluating effects of route type on abundance and obtaining accurate 

baseline estimates of abundance for Montana, 

2. Compare abundance estimates from off-trail, trail, and road-based point counts,  

3. Use field survey data and simulations to evaluate the relative performance, measured 

through bias and precision under varying levels of survey effort, of N-mixture, 

hierarchical distance sampling, hierarchical distance sampling with time removal and 

naïve models unadjusted for imperfect detection. We sought to identify the analytical 
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approach that produced unbiased (i.e., near the truth) and precise (≤15% coefficient 

of variation) indices of population size with the least amount of required survey 

effort, and 

4. Conduct a power analysis to evaluate whether the final protocol recommended by the 

simulations was sufficient for accurately estimating population trends in order to 

identify potential declines in populations of Dusky Grouse.  

Our approach was to 1) conduct two initial sets of simulations to identify the most 

appropriate field survey protocols, 2) compare the impact of placing points off-trail, on trails, or 

roads on abundance, 3) use field data to provide empirical estimates of abundance and detection 

that will determine the scenarios under which different protocol simulations would occur, and 4) 

conduct simulations with multiple statistical estimators under different scenarios to estimate the 

number of sites and visits needed to obtain unbiased and reasonably precise estimates of 

abundance.  

Study Area  

Our study occurred over three years (2019–2021) throughout western Montana in areas 

predicted to be Dusky Grouse habitat by a habitat suitability model developed based on spring 

locations (Chapter 2, Figure 9). Predicted Dusky Grouse habitat was dominated by coniferous 

and mountainous forests in west-central and western portions of the state. The Montana 

Department of Fish, Wildlife, and Parks (MFWP) divides the state into 7 administrative regions; 

Regions 1–3 occur in western Montana, Regions 4–5 in central Montana, and Regions 6–7 in 

eastern Montana (Figure 9). The majority (99%) of Dusky Grouse habitat occurs in MFWP 

Regions 1–5. During the pilot year (2019), we restricted grouse surveys to MFWP Region 3. In 
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2020–2021, we expanded the study area to include all Dusky Grouse habitat in MFWP Regions 

1–5.  

Methods 

Field-based Surveys 

Field biologists and volunteers specifically trained to conduct Dusky Grouse surveys 

selected among a randomly generated set of potential line-point transects consisting of 5–6 

points based on their accessibility. The first points of the transects were randomly generated 

using ArcMap 10.3.1 across public land (mainly U.S. Forest Service lands) in areas predicted to 

be Dusky Grouse habitat (Figure 9). During the 2019 pilot season, surveys consisted of off-trail 

transects with 5 points placed 500 m apart in a pentagon shape with the first point located 300-m 

from a road or trail. Surveys in 2020 and 2021 occurred along roads and trails with the first point 

randomly generated and the subsequent locations placed ≥ 400 m apart (Figure 10). The same set 

of generated site locations were used in 2020 and 2021. Surveys were conducted during 10 

April–21 May in 2019 and 10 April–1 June in 2020 and 2021.  

During our pilot season in 2019, we surveyed each site during 3 mornings within a 2-

week period. We recorded then number and locations of all Dusky Grouse, ruffed grouse 

(Bonasa umbellus), and spruce grouse (Canachites canadensis), collectively referred to as 

‘mountain grouse’, while walking between points and during each point-count. Care was taken to 

not double count grouse. Grouse detected during the line-transect and during a point-count were 

recorded independently for each method. Point-count surveys consisted of two four-minute 

point-counts conducted consecutively. The first point-count was conducted without electronic 

playback of female calls (cantus, whinny, and cackle) and the second point-count was conducted 
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with playback (SanDisk 8 GB Clip Jam Mp3 Player, JBL Charge 3 speaker). Playback 

recordings consisted of alternating 30 seconds of calling and 30 seconds of silence until the 

entire four minutes of the survey had elapsed. For each detection, the distance to each grouse, 

vocalization, behavior, and sex (if known) was recorded, with distance to grouse measured to the 

nearest meter with a laser rangefinder. For auditory detections, the location of a grouse was 

narrowed to a specific area and then distance to that area was measured. To control for 

measurement error in exact distance for auditory detections, we placed distances into four bins: 

0–25 m, 26–50 m, 51–75 m, and 76–100 m. In addition, for use with removal models, for point-

counts we also recorded the minute of the survey in which the detection occurred.  

In 2020 and 2021, we expanded our survey efforts to all of western Montana (MFWP 

Regions 1–5), moving transects from off-trail to on roads and trails for logistical reasons. Field 

biologists and volunteers continued to select survey sites from the randomly generated transects 

based off accessibility. Surveys were only conducted using electronic playback of the female call 

edited to only include cantus and cackle. Surveys consisted of a total of four four-minute point-

counts at each point located along a transect, each of which was treated as an independent 

sample and all grouse observed were recorded during each period. Two of the four independent 

point-counts occurred as the observer traveled from the start to end of the transect, then a 10-

minute break occurred, and two additional point-counts occurred as observers traveled from end 

to the beginning of the transect. Each pair of point-counts was conducted consecutively with ≤ 1 

minute between them, yielding a total of four point-counts per point in one morning. Placing 

repeat visits close in time allowed us to meet the primary assumption of N-mixture models that 
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surveys are conducted within a period of population closure while allowing transects to only be 

visited once. 

We recorded survey conditions during each point-count including day since the sampling 

period started, minutes from sunrise, temperature, wind speed, precipitation, cloud cover, and 

noise level. Day of the season on which surveys occurred was calculated relative to a start day of 

10 April (day 1). To determine the time of sunrise, we associated each site with a city within 

each MFWP Region. We measured temperature (°C) and wind speed (km/hr) using a hand-held 

weather meter (Kestrel model 2000, Kestrel Meters, Boothwyn, PA). Precipitation, cloud cover 

and noise level were divided into four categories. Precipitation was classified as none, rain, 

snow, and fog. Cloud cover was classified as 0–15%, 16–50%, 51–80%, and 81–100% of the sky 

covered. Noise level was classified as none (0), slight background noise but no hearing 

impairment (1), moderate background noise and some hearing impairment (2), and deafening 

background noise and total hearing impairment (3). 

Simulations to Inform Field Survey Protocols 

2019 Pilot Season Protocols. To evaluate potential protocols for the 2019 pilot season, we 

conducted a series of 16 simulation scenarios, and analyzed the simulated data using single-

season N-mixture models in a Bayesian framework (see Appendix E for a general description of 

the simulations and model in the BUGS language; Thomas 2006). N-mixture models are 

composed of two linked sub-models where the variation in local abundance is described with a 

Poisson distribution (ecological process), and the variation in counts is described by a binomial 

random process (observation process): 

𝑁𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)    Equation 1 
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𝑦𝑖,𝑗|𝑁𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖, 𝑝), 

where Ni is the true abundance at site i, 𝑦𝑖,𝑗 is the observed count at site i during replicate survey 

j and p is the probability of detecting a grouse during a survey (Royle 2004, Kéry and Schaub 

2012, Kéry and Royle 2016). Priors for the model consisted of standard vague priors: a gamma 

distribution (0.005, 0.005) for lambda and a uniform distribution (0,1) for probability of 

detection (Kery and Schaub 2012). 

For our simulation scenarios, we varied the number of independent survey sites (50, 100, 

200, and 500) and number of visits (2–3), simulating data under two mean local abundance 

scenarios using a Poisson distribution and a binomial distribution with a constant probability of 

detection. Our abundance and detection scenarios were informed by preliminary work in 

northeastern Utah that indicated that average Dusky Grouse abundance in good to excellent 

habitat in Utah ranged from 0.625 to 1.25 grouse per survey site and that detection probability 

during a survey was similar across sites and averaged 0.5 (D. Dahlgren, Utah State University, 

personal communication). We sampled abundance from a Poisson distribution and simulated 

observations of grouse at each site during each survey by drawing randomly from a binomial 

distribution, where probability of detection (p) had a mean of 0.5. We used the R2WinBugs 

package to call WinBugs in R to analyze our simulated datasets and used standard vague priors 

previously described for all hyper-parameters that provided little or no information about the 

estimated parameters (Appendix E; Sturtz et al. 2005, Kellner 2019, R Core Team 2017, Kéry 

and Schaub 2012, Kéry and Royle 2016). We ran three chains of length 40,000 after a burn-in 

period of 10,000 and thinned the posterior chains by 100 to ensure independence. We assessed 

convergence visually using traceplots and by using the Gelman-Rubin (�̂�) statistic, which 
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examines the variance ratio of the Markov chain Monte Carlo (MCMC) algorithm within and 

between chains across iterations (Gelman and Rubin 1992).  We accepted parameter estimates 

when they came from Markov chains with �̂� between 1.0 and 1.01. 

We estimated and quantified bias for mean local abundance (𝜆), local abundance (�̂�𝑖) per 

site, total abundance �̂� estimated as ∑ �̂�𝑖, and probability of detection (𝑝). To quantify bias for 

each estimate, we ran 400 iterations of each data simulation and analysis for each survey 

protocol scenario and calculated the difference between the estimated parameter and true 

parameter value. We compared the posterior distributions of the mean differences between each 

estimate and the true values across all 400 simulations and considered an estimate to be clearly 

biased if the 90% credible interval (CrI) of the differences did not include 0. At each of the 

iterations we calculated the coefficient of variation (CV =  
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
) for total 

abundance, evaluating the posterior distributions of the 400 derived CV estimates. We estimated 

the probability that the average coefficient of variation would meet the manager-determined 

threshold of ≤ 15% by calculating the proportion of the total posterior distribution density greater 

than 0.15. We considered protocols that resulted in a CV ≤ 15%, 90% of the time to be 

acceptable for meeting the objective of the monitoring program. 

2020 and 2021 Season Protocols. We updated our survey protocols for 2020 and 2021 

using empirical estimates of abundance and detection from our 2019 pilot season data for our 

simulation scenarios. Overall, we conducted a series of 13 simulations analyzed again using 

single-season N-mixture models in a Bayesian framework using jags (Plummer 2003). Our 

simulation approach was like that of the previous simulations.  
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We analyzed data from the point-counts conducted with electronic playback using single-

season N-mixture models (pcount function, which is the same model structure described above) 

with the ‘unmarked’ package in R (Fisk and Chandler 2011, Kery and Royle 2016, R Core Team 

2017). We estimated local abundance and probability of detection by specifying a model with 

constant detection and abundance (Equation 1). We evaluated potential overdispersion in our 

observation data by evaluating and comparing N-mixture models with different abundance 

distributions: Poisson, a negative binomial, and a zero-inflated (Kéry and Schaub 2012, Kéry and 

Royle 2016). We evaluated and compared support for models using Akaike’s Information 

Criterion (AIC) to identify the statistical distribution with the most support, which we 

subsequently used for estimating local abundance and probability of detection (Burnham and 

Anderson 2002, Kéry and Schaub 2012). 

We evaluated the efficacy of our pilot season survey methods (3 replicated visits at 100 

independent survey sites located off trail) using the empirical estimates of abundance (0.36, 95% 

CI: 0.18, 0.73) and p (0.28, 95% CI: 0.13, 0.50). After examining the results of simulations using 

the 2019 survey protocol, we evaluated whether estimator precision could be increased by 1) 

increasing the number of replicate survey visits per point, and 2) increasing numbers of 

independent survey points. We evaluated simulated datasets based on 100 independent survey 

points with increasing numbers of replicate visits and then increasing number of survey points 

with three replicate visits. Next, we kept the number of visits at 4 and varied the number of 

survey points from 200–360. To examine the feasibility of the potential protocols that yield 

relatively precise results, we calculated how many survey mornings would be needed if survey 

transects included 5 or 6 points per transect, and 3 or 4 replicates occurred in one morning. 



88 

 

 

Effects of Route Type on Abundance 

To compare route types (off-trail, trail, and road) for the point-count surveys, we 

estimated local abundance for spring point-counts conducted using electronic playback using 

single season N-mixture models evaluated using the pcount function in the R package 

‘unmarked’ (Fisk and Chandler 2011, R Core Team 2017). Given differences in protocol 

between 2019 and 2020–2021, we estimated abundance for off-trail point counts (equation 1) 

separately from trail and road point counts (equation 2). We estimated abundance for trail and 

road point counts by modeling abundance using a log-linear function to account for the effects 

route type (trail, road) and survey year (2020, 2021): 

𝑁𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)       Equation 2 

𝑦𝑖,𝑗|𝑁𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖, 𝑝)   

log(𝜆𝑖) =  𝛼0 +  𝛼1 ∗  𝑥1𝑖 + 𝛼2 ∗  𝑥2𝑖   

where 𝛼0 is the intercept, 𝛼1 and 𝛼2 correspond to slopes for each covariate (𝑥) , 𝑥1𝑖 represents 

route type and 𝑥2𝑖 represents survey year (Kery and Schaub 2012). 

Empirical Estimates of Abundance and Detection to Inform 

Simulation Scenarios 

To evaluate survey effort required to achieve annual estimates of Dusky Grouse 

abundance with a coefficient of variation of ≤ 15% from point-count and transect survey 

protocols, we first developed and modeled simulated datasets based on empirical estimates of 

abundance and detection probabilities from our 2020 and 2021 spring survey effort for N-

mixture, hierarchical distance sampling, time-removal HDS, and naïve (raw counts) models. To 

obtain baseline estimates of local abundance state-wide and within MFWP Regions 1–5, we 

evaluated the point-count data with single-season N-mixture models (pcount function) and HDS 
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models (distsamp function) using the R package ‘unmarked’ (Fisk and Chandler 2011, Kéry and 

Schaub 2012, Kéry and Royle 2016). We used a multinomial-Poisson mixture model for the 

HDS model:  

𝑁𝑠 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑠)        Equation 3 

log(𝜆𝑠) =  𝛽0 + 𝛽1 ∗ 𝑥𝑠 

𝑦𝑠ℎ  ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑠, 𝜋𝑠),  

where 𝑁𝑠 represents the true abundance at site s, and a log linear model can be used to model the 

effect of a covariate (e.g. MFWP Region) on expected abundance, 𝜆𝑠, where 𝛽0 is the intercept, 

𝛽1 is the slope, and 𝑥𝑠 is the covariate. The observed count of individuals for each site, s, in each 

distance class, h, is 𝑦𝑠ℎ, and 𝜋𝑠ℎ represents the multinomial cell probability for site s and 

distance class h (Royle et al. 2004, Kéry and Royle 2016). The multinomial cell probabilities 

depend on the detection-function parameter sigma, 𝜎, used with the half-normal detection-decay 

function. We evaluated models where detection was constant and local abundance was constant 

to obtain average state-wide estimates of abundance. To obtain regional local abundance 

estimates we evaluated models where detection was constant and abundance varied by MFWP 

administrative region. To model variation in local abundance, we used a log-linear model for 

both the N-mixture model (equation 2) and hierarchical distance sampling model (equation 3; 

Kéry and Royle 2016). 

We used a Poisson distribution for our N-mixture models and examined overdisperson 

(𝑐)̂ using the N-mixture goodness of fit test function, Nmix.gof.test (Mazerolle 2020). For point-

count HDS models, we used the first visit to each site, and then evaluated a constant model with 

three different detection functions: half-normal, hazard rate, and uniform (Buckland et al. 2001). 
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We used AIC to rank and select the most appropriate detection function for estimating local 

abundance (Burnham and Anderson 2002). We then compared regional estimates of local 

abundance for point counts for the two statistical estimators; estimated local abundance was 

similar among models (see Results) and we used estimated local abundance and detection 

probability from the N-mixture model to inform our simulation scenarios (e.g., low abundance, 

average abundance, and high abundance). For line-transect HDS models we extrapolated the 

abundance estimate per transect from the point-count abundance estimates from the N-mixture 

models.  

To obtain an average probability of detection we evaluated models with constant 

probability of detection and constant abundance for all three statistical estimators using the 

pcount, distsamp, and gdistremoval functions from the unmarked package (Fisk and Chandler 

2011). The N-mixture (equation 1) and HDS (equation 3) were the same as those described 

previously except without covariates. We evaluated HDS models for both point-counts and line-

transects. We evaluated three different detection functions (half-normal, hazard-rate, and 

uniform) for line-transect visits 1 and 2, using AIC to select the most appropriate detection 

function. We used a four-part model hierarchical model as described by Kery and Royle (2016, 

p. 473-474) and Amundson et al. (2014) for the time-removal HDS model:  

𝑀𝑠 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑠)       Equation 4 

log(𝜆𝑠) =  𝛼0 + 𝛼1 ∗  𝑥𝑠 

𝑁𝑠 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑀𝑠, 𝜙) 

𝑛𝑠 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑠, �̅�𝑠), 

where �̅�𝑠 is made of two components: 
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𝑡𝑖𝑛𝑡 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋𝑎
𝑐) 

𝑑𝑐𝑙𝑎𝑠𝑠 ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋𝑑
𝑐 ), 

and 𝑀𝑠  represents the local population size at a site (s) is estimated as a Poisson random variable 

with a mean 𝜆𝑠 (Kery and Royle 2016). The second part of the model represents the number of 

individuals available to be detected during the distance sampling survey, (𝑁𝑠), with parameters 

probability of availability (𝜙) and 𝑀𝑠. The probability of availability (𝜙) describes the 

probability that an individual is available for detection at all during the survey and is related to 

the per-interval probability of availability, 𝑝𝑎, where 𝜙 = 1 − (1 −  𝑝𝑎)𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 (Kery 

and Royle 2016). The number of individuals detected at site s, ns, is the result of a random 

binomial draw based on the number available to be detected (Ns) and the net probability of an 

individual being detected at all in any distance class, �̅�𝑠 (Kery and Royle 2016). Last, conditional 

on ns, the distributions for two categorical individual covariates for distance class (dclass) and 

time interval (tint) are specified (Kery and Royle 2016). Cell probabilities for dclass are 

dependent on the distance-based detection model, while cell probabilities for tint are dependent 

on pa (Kery and Royle 2016).  

Survey protocols often recommend survey conditions under which surveys should or 

should not be surveyed (e.g. not conducting surveys on windy or rainy days), and so we 

hypothesized that the probability of detecting a Dusky Grouse was impacted by survey 

conditions. To obtain a high probability of detection, which would represent surveying under 

recommended survey conditions, we predicted detection probability (𝑝, 𝜎 or 𝑝𝑎) under optimal 

survey conditions: no precipitation, wind, cloud cover or background noise, average temperature, 

and day of season and minutes from sunrise when peak detection occurs (Chapter 3).  
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For the N-mixture model and HDS for point-counts 𝑝 and 𝜎, respectively, were modeled 

as a function of all survey conditions. Covariates for probability of detection for the N-mixture 

model were modeled using a logit-link function:  

𝑁𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)    Equation 5 

𝑦𝑖,𝑗|𝑁𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖, 𝑝𝑖,𝑗)   

logit(𝑝𝑖,𝑗) =  β0 +  𝛽1 ∗  𝑥1𝑖,𝑗 +  𝛽2 ∗  𝑥2𝑖,𝑗 +  … +  𝛽𝑞 ∗  𝑥𝑞,𝑖,𝑗    

where β0 is the intercept, 𝛽1, 𝛽2, … , 𝛽𝑞 represent coefficients, and 𝑥1𝑖,𝑗, 𝑥2𝑖,𝑗, … , 𝑥𝑞,𝑖,𝑗 represent 

different covariates such as precipitation, wind speed, and temperature (Kéry and Schaub 2012). 

Covariates for the detection function for the hierarchical distance sampling model were modeled 

using a log-linear function affecting 𝜎: 

log(𝜎𝑠) =  𝛼0 +  𝛼1 ∗  𝑥1𝑠 +  𝛼2 ∗  𝑥2𝑠 + … +  𝛼𝑞 ∗  𝑥𝑞𝑠   Equation 6 

 where 𝛼0 is the intercept, 𝛼1, 𝛼2, … 𝛼𝑞 are the coefficients for the variables, and 𝑥1𝑠, 𝑥2𝑠, … 𝑥𝑞𝑠 

are different survey conditions (Royle et al. 2004). Probability of detection is broken into two 

components for time-removal HDS models: availability and perceptibility. We modeled 

availability (𝑝𝑎) as a function of precipitation, cloud cover, wind speed, day, and minutes since 

sunrise, while we modeled perceptibility (𝜎) as a function of background noise level. Similar to 

the HDS model, the time-removal HDS model’s detection function was also dependent on 𝜎 and 

the effect of background noise was modeled using a log-linear model (equation 6, Amundson et 

al. 2014, Kéry and Royle 2016). Covariates on availability for the hierarchical distance sampling 

model were modeled on pa using a logit-link function (Kery and Royle 2016, Amundson et al. 

2014):   

logit(𝑝𝑎) =  β0 +  𝛽1 ∗  𝑥1𝑠 +  𝛽2 ∗  𝑥2𝑠 +  … + 𝛽𝑞 ∗  𝑥𝑞𝑠   Equation 7 
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where β0 is the intercept, 𝛽1, 𝛽2, … 𝛽𝑞 are the coefficients for the different covariates, 𝑥1𝑠, … 𝑥𝑞𝑠 

such as precipitation and wind speed.  

Before fitting models to predict high probability of detection, we first examined the 

possibility of nonlinear relationships between probability of detection and a survey condition. 

We hypothesized probability of detection could exhibit nonlinear associations with minutes since 

sunrise and day during the sampling period due to known temporal display behaviors of grouse 

(Bendell and Elliot 1967, Zwickel and Bendell 2004, Farnsworth 2020). We explored nonlinear 

responses by using linear equations to represent our hypothesized relationship. We used [x + x2] 

to represent the quadratic form where detection probability may be maximized at some 

intermediate value of x. We evaluated support for non-linear relationships using AIC to evaluate 

univariate models for the two different functional responses for the N-mixture, HDS, and time-

removal HDS for point-count surveys and HDS for line-transect surveys.  

After preliminary screenings of the different potential functional responses, we predicted 

𝑝, 𝜎, or 𝑝𝑎 under optimal survey conditions, which included no wind, cloud cover, precipitation, 

background noise, optimal estimated minutes from sunrise and day during the sampling period, 

and average temperature (Chapter 3). The max value of predicted 𝑝, 𝜎, or 𝑝𝑎 was used as the 

empirical estimate of ‘high’ detection probability of a grouse for simulating our datasets. We did 

not have transect level covariates for survey conditions, so for HDS line-transects we modeled 𝜎 

as a function of day to obtain our high probability of detection.  

We defined average, high, and low abundances (mean local abundance or average 

abundance per point count) for our simulation scenarios based on empirical estimates of state-

wide mean abundance (0.18, 95% CI: 0.17–0.20), the region with the lowest estimated mean 
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local abundance (0.08, 95% CI: 0.06, 0.11), and the region with the highest estimated mean local 

abundance (0.31, 95% CI: 0.27–0.37). We defined average detection for each model type, 𝑝 for 

N-mixture models (0.37, 95% CI: 0.35, 0.40), 𝜎 for HDS point-counts (43, 95% CI: 38–47), 𝜎 

for HDS line-transects (43, 95% CI: 38–47), 𝜎 for time-removal HDS (42, 95% CI: 38–47), and 

𝑝𝑎 for time-removal HDS (0.23, 95% CI: 0.15–0.34) as the average state-wide constant detection 

and high 𝑝 (0.57, 95% CI: 0.52, 0.62), 𝜎 for HDS point-counts (58, 95% CI: 38–86), 𝜎 for HDS 

line-transects (51, 95% CI: 38–86), 𝜎 for time-removal HDS (48, 95% CI: 41–55), and 𝑝𝑎 (0.43, 

95% CI: 0.16, 0.69) as the probability of detection under optimal survey conditions. We 

developed and modeled simulated datasets based on six scenarios:  

1. average abundance with average detection,  

2. high abundance with average detection,  

3. low abundance with average detection,  

4. average abundance with high detection,  

5. high abundance with high detection, and  

6. low abundance with high detection.  

Simulations to Evaluate Different Statistical Estimators for 

Abundance 

We simulated data based on empirical estimates of abundance and probability of 

detection, from the 2020 and 2021 field data and estimated abundance in a Bayesian framework 

using four methods: single-season N-mixture models (equation 1), HDS (equation 8), time-

removal HDS (equation 4), and a naïve model (equation 9). We used a Bayesian framework 
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because of increased model flexibility and because it allowed us to estimate all the desired 

parameters (𝜆, �̂�𝑖 per site, �̂�, 𝑝, 𝜎, 𝑝𝑎, 𝜙) with estimates of uncertainty.   

As we are unable to specify a random variable as a multinomial index in BUGS language, 

to implement HDS models within a Bayesian framework, we needed to use a three-part 

multinomial, binomial, Poisson mixture model (Kéry and Royle 2016, p. 453) instead of the 

previously described multinomial-Poisson mixture model:  

𝑦𝑠|𝑛𝑠 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛𝑠, 𝜋𝑠
𝑐)   Equation 8 

Where 𝜋𝑘
𝑐 =  𝜋𝑘/(1 − 𝜋0), with index k representing the kth element of the vector 𝜋𝑠

𝑐, and 1 −

𝜋0 represents total capture probability.  

𝑛𝑠|𝑁𝑠 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑠, 1 − 𝜋0) 

𝑁𝑠 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑠) 

Within the model, we used a conditional multinomial observation model where we conditioned 

on the observed data 𝑛𝑠, the number of individuals observed at site s, instead of the latent 

variable, 𝑁𝑠 (local abundance; Kéry and Royle 2016). The multinomial distribution in the first 

part of the model describes the model for the distance class of 𝑛𝑠, the observed individuals which 

are the result of imperfect detection of 𝑁𝑠 as described in the second part of the model (Kéry and 

Royle 2016). In the third part of the model, similar to the other models we have used, local 

abundance (Ns) is estimated as a Poisson random variable with a mean 𝜆𝑠 (Kéry and Royle 

2016).  

The naïve model, evaluated to demonstrate the importance of using an unbiased estimator 

that incorporates probability of detection, represented a model where detection probability is 

assumed to be perfect and fitted with a Poisson regression: 
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𝑁𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

We used jags (package jagsUI) in R to analyze our simulated datasets and used vague 

priors for all hyper-parameters that provided little or no information about the estimated 

parameters: for lambda we used a gamma distribution (0.005, 0.005 or 0.001, 0.001), for 

probability of detection for the N-mixture model we used a uniform distribution (0,1), for sigma 

for the HDS model for point-counts and line-transects, and time-removal HDS we used a 

uniform distribution (0,100), and for probability of availability for time-removal HDS we used a 

uniform distribution (0,1). (Appendices A–F, Kellner 2019, R Core Team 2021, Kery and 

Schaub 2012, Kery and Royle 2016). We varied the length of chains, burn-in period, and 

thinning based on simulation needs for each model type. We assessed convergence using the 

Gelman-Rubin (�̂�) statistic and accepted parameter estimates when they came from Markov 

chains with �̂� between 1.0 and 1.1 (Gelman and Rubin 1992). 

We quantified bias for the appropriate probability of detection parameters for each model 

types: probability of detection (𝑝) for the N-mixture model, sigma (𝜎) for the hierarchical 

distance sampling models, and availability (𝜙) for the time-removal HDS model. For all models 

we quantified bias for mean local abundance (𝜆), estimated local abundance (�̂�𝑖, �̂�𝑠 or �̂�𝑖) per 

site, and total abundance �̂� estimated as ∑ �̂�𝑖 or ∑ �̂�𝑠 (or �̂� estimated as ∑ �̂�𝑖 for time-removal 

HDS). To quantify bias, we simulated and evaluated data 500 times for each survey protocol 

scenario and calculated the difference between the estimated parameter and the true parameter 

for each iteration. We then compared the posterior distributions of the mean differences between 

each estimate and the true values across all 500 simulations and considered an estimate to be 

biased if the 90% credible interval (CrI) of the differences did not include 0. At each of the 
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iterations we also calculated the coefficient of variation for total abundance (�̂� or �̂�) and 

evaluated the posterior distribution of the 500 derived coefficient of variation estimates in order 

to determine if the survey protocols resulted in the desired level of precision for total population 

size. We estimated the probability that the mean coefficient of variation would meet the desired 

level of precision of a CV of ≤15% by calculating the proportion of the total CV posterior 

distribution density was > 0.15. We considered a protocol that resulted in a CV ≤ 15%, 90% of 

the time to be acceptable for the monitoring program.  

For the N-mixture, hierarchical distance sampling and time-removal HDS models we 

evaluated whether estimator precision could be increased by increasing the number of 

independent survey sites. For our simulated survey protocols for point-counts, we increased the 

number of sites visited each time by 100 until we achieved unbiased and relatively precise 

(<15% CV, 90% of the time) estimates of population abundance. We then decreased the number 

of sites by 20, evaluating the different protocols until the model no longer produced estimates 

with the desired level of precision, after which we increased the number of sites by 10 to 

evaluate the midpoint between the thresholds to identify the requisite number of sites. For line 

transects we started with 100 sites, and then as 100 sites was more than sufficient for reaching 

our desired level of precision, we decreased the number of sites from 100 by 20 until the 

coefficient of variation was no longer ≤ 15%, 90% of the time. At that point we then increased 

the number of sites by 10 and then decreased by 5 to further narrow down the number of sites 

that need to be visited.  

For our N-mixture models (see Appendix E for code) we also varied the number of visits 

to a site, evaluating survey protocols with 2, 3, or 4 visits. Visiting a site multiple times requires 
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additional time and survey effort, and so in addition we investigated whether visits could occur 

back-to-back on or on the same day, which would decrease travel time and make multiple visits 

more logistically appealing. An implicit assumption of the binomial distribution used in the 

observation part of the N-mixture model is that events are independent, and this assumption 

could be violated if back-to-back visits or visits occurring on the same day are correlated. We 

tested the effects of correlated point-counts on probability of detection and local abundance 

(Appendix F), with the correlation matrix estimated from the 2020 and 2021 point-count data 

where back-to-back point counts occurred (Table 18). The correlated data was simulated by 

summing generated correlated Bernoulli values for each visit, and then using a for loop to filter 

out datasets that did not yield the desired correlation until a dataset with the desired correlation 

was produced. The correlations used for the simulations were ± 0.05 of the values in the 

correlation matrix (Table 18). For the non-correlated simulations, we ran three chains of length 

5,000 after a burn-in period of 1,000 and thinned the posterior chains by 1. For the correlated 

simulations, we ran three chains of 30,000 after a burn-in period of 100 and thinned the posterior 

chains by 1.  

For the hierarchical distance sampling (HDS) models, we evaluated models for both 

point-counts (Appendix G) and line-transect surveys (Appendix H) using a half-normal detection 

function determined previously to be appropriate for our data. For the line transect surveys we 

conducted simulations for transect lengths of 2,681 m (the average transect length) and 5,000 m. 

For both the line transect and point-count simulations we ran three chains of length 5,000 after a 

burn-in period of 1,000 and thinned the posterior chains by 1.  
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For the time-removal HDS model (Appendix I), we evaluated data under two simulation 

scenarios due to computational constraints and preliminary results indicating the number of 

point-counts needed (> 6,000) would be logistically unfeasible even for the high abundance, 

average detection scenarios. We evaluated the model for both high abundance scenarios, and 

given previous patterns, we assumed the scenarios with high abundance would require the lowest 

amounts of survey effort. For these simulations we ran three chains of length 20,000 after a burn-

in period of 1,000 and thinned the posterior chains by 1. 

We evaluated naïve models (Appendix J) for point-counts using the protocols identified 

to be most effective and logistically feasible. We used only 1 visit and based the number of sites 

(60, 80, 140, 170, 240, 490) visited on the recommended survey protocol out of the other three 

model types for the different scenarios. For the simulations, we ran three chains of length 3,000 

after a burn-in period of 100 and thinned the posterior chains by 1.  

Power Analysis 

We generated an initial average local abundance of 0.18 grouse per site for year 0 across 

80 sites (recommended protocol based on the average abundance, high detection scenario for the 

N-mixture model where each site is visited four times), and then to project the population 

through time, we modeled the persistence of birds at each site using a binomial draw where the 

probability of persistence was 1 – target annual trend (Steidl et al. 2013, Anderson and Steidl 

2019). We examined trends of 1% annual decline, 3% annual decline, 5% annual decline, and 

10% annual decline for 3, 5, and 10 years. We simulated counts by randomly drawing from a 

binomial distribution where N = Nt and p = probability of detection for four visits and used an N-

mixture model in unmarked to estimate total abundance for each year. We then used the log-
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transformed abundance as the response variable and regressed total population across years to 

get the slope of the population trend for the estimated abundances and true total abundances. We 

used 90% confidence intervals to determine if the slope of the trend was different than zero for 

the estimated abundances and ran this simulation 500 times (Gibbs and Melvin 1997, Steidl et al. 

2013). The proportion of slopes different from zero represented the power of the protocol, and 

we considered an acceptable protocol to have a power ≥ 80% (Steidl et al. 2013, Weiser et al. 

2019). In addition, we looked at how often the slope was predicted to be negative. We also 

calculated the mean trend for the estimated abundances and the mean difference between the 

trends estimated using the estimated abundances and the true abundances, calculating a 95% 

confidence interval using a quantile of 0.025 and 0.975.  

Results 

Simulations to Inform Field Survey Protocols 

2019 Pilot Season Protocols. Results of our simulations indicated that 3 replicate surveys 

at each of 100 independent survey sites within a period of closure yielded unbiased and relatively 

precise (≤15% CV) indices of regional population abundance when the average site-specific 

abundance was ≥ 0.625 grouse (Appendix K).  

2020 and 2021 Season Protocols. A Poisson distribution was most supported for the N-

mixture model indicating no overdispersion (Appendix L). We used empirical estimates of 

abundance, 0.36, and probability of detection, 0.28, when simulating data. Simulations 

evaluating the efficacy of 2019’s survey effort (100 sites visited 3 times) yielded relatively 

imprecise estimates (CV > 15%;  Appendix M). When we kept the number of visits at 3, our 

simulations indicated that replicate surveys at each of 600 independent sites would be needed 
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(Appendix M). When only 100 independent sites were surveyed, a minimum of 7 replicate visits 

was needed to yield unbiased and relatively precise (< 15% CV) indices of regional population 

abundance (Appendix M).  

When we varied the number of sites keeping number of visits at 4, protocols that yielded 

unbiased and relatively precise (<15% CV) indices of regional population abundance were 

surveying at 300 and 360 independent survey sites, requiring a respective 50–60, and 60–72 

survey mornings (Appendix M). Based on the simulation results, we designed survey protocols 

for 2020–2021 where at least 360 sites were surveyed 4 times per MFWP region.  

Effects of Route Type on Abundance 

We surveyed 90 off-trail sites in 2019, 845 and 744 road sites, and 803 and 731 trail sites 

in 2020 and 2021 respectively. Estimated local abundance was higher for survey points located 

off-trail (0.36, 95% CI: 0.18–0.73) than those located along trails (0.19, 95% CI: 0.16–0.23 in 

2020 and 0.23, 95% CI: 0.20–0.27 in 2021) or roads (0.17, 95% CI: 0.14–0.20 in 2020 and 0.14, 

95% CI: 0.12–0.17 in 2021; Table 13, Figure 19).  

Empirical Estimates of Abundance and Detection to Inform 

Simulation Analyses 

We conducted 3,292 sets of point-counts (each set varying between 1–4 repeat visits) 

across 2,372 sites and walked 551 line-transects two times. Due to incomplete data, for the N-

mixture model analysis we only used 3,123 sets of point-counts (each with 4 repeat visits), for 

the HDS point count models we only used data from 3,234 point-counts across 2,349 sites, and 

for the HDS line-transect models we only used data for 514 transects.  
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Abundance Estimates. We used a Poisson distribution for the N-mixture models as the 

data did not appear overdispersed (�̂� = 1.4). We found a half-normal detection best fit our data 

for the HDS models for point-counts (Appendix N). Average estimates of Dusky Grouse 

abundance for point-counts were 0.18 (95% CI: 0.17, 0.20) Dusky Grouse from the N-mixture 

model and 0.20 (95% CI: 0.16, 0.24) from the HDS model (Tables 14, 15). Regional local 

abundance estimates were similar across the N-mixture and point-count distance sampling 

models (Figure 20). Estimated abundance estimates were lowest for MFWP Region 4, where the 

N-mixture model estimated a local abundance of 0.08 (95% CI: 0.06, 0.11) and the hierarchical 

distance sampling model estimated a local abundance of 0.07 (95% CI: 0.04, 0.12; Tables 14, 

15). Estimated abundance was greatest in MFWP Region 2, where the N-mixture model 

estimated a local abundance of 0.31 (95% CI: 0.27, 0.37) and the hierarchical distance sampling 

model estimated a local abundance of 0.36 (95% CI: 0.27, 0.47; Tables 14, 15). Because, on 

average, the N-mixture models produced more precise estimates of local abundance, we chose to 

use estimates from N-mixture models to inform our simulation scenarios; we used a low local 

abundance of 0.08, an average local abundance of 0.18, and a high local abundance of 0.31 to 

create simulation scenarios (Table 16).  

N-mixture Model Probability of Detection. The average probability of detection was 0.37 

(95% CI: 0.35, 0.40). A quadratic relationship between probability of detection and day of 

survey season and minutes from sunrise was most supported (Chapter 3). Under optimal survey 

conditions, our high estimate of probability of detection was 0.57 (95% CI: 0.52, 0.62) occurring 

on May 13th and at 86 minutes post-sunrise (Figure 21, Table 16).  
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HDS Model Probability of Detection for Point-counts. Average 𝜎 for estimating the half-

normal detection function was estimated to be 43 (95% CI: 38, 47). While evaluating the effects 

of survey conditions on 𝜎, unlike with N-mixture models, we only found support for day since 

sampling period started to have a nonlinear relationship with 𝜎 with 𝜎 being highest on May 10th 

(Figure 21, Appendix O). Under optimal conditions, our high estimate for 𝜎 for HDS models for 

point-counts was 58 (95% CI: 38, 86; Table 16).  

HDS Model Probability of Detection for Line-transects. When we evaluated the most 

appropriate detection function for the line-transects for visit 1 both the hazard-rate and half-

normal had model support and similar abundance estimates (Appendix N, Figure 22). The half-

normal detection function was most supported for visit 2, and the hazard-rate detection function 

model was unable to converge and produced unrealistically high abundance estimates. As a 

result, we chose to use a half-normal function to generate our simulated line-transect data and 

analyze it. Average 𝜎 was estimated to be 42 (95% CI: 37, 49; Table 16). We found support for 

day since the sampling period started to have a nonlinear quadratic relationship with 𝜎, resulting 

in 𝜎 being highest on May 9th with a 𝜎 of 51 (95% CI: 42, 61; Figure 21, Table 16, Appendix 

O). 

Time-removal HDS. Average 𝜎 (for a half-normal detection function) was estimated to 

be 42 (95% CI: 38, 47) and availability (𝜙) was calculated to be 0.65 with 𝑝𝑎 estimated to be 

0.23 (95% CI: 0.15, 0.34; Table 16). We only found support for a quadratic relationship between 

day since the sampling period started and availability, with availability highest on May 12th 

(Figure 21, Appendix O). Under ideal survey conditions, our high estimate of probability of 
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availability (𝜙) was 0.89, 𝑝𝑎 was estimated to be 0.43 (95% CI: 0.16, 0.69), and 𝜎 for the half-

normal detection function was 48 (95% CI: 41, 55; Table 16).  

Simulations Evaluating Different Statistical Estimators and 

Survey Effort 

Overall, N-mixture models, HDS for point-counts, and time-removal HDS produced 

unbiased estimates for both abundance and detection parameters with sufficient survey effort 

(Figures 23–25). Though protocols for line-transects evaluated using HDS also produced 

unbiased estimates on average for both abundance and detection parameters, their credible 

intervals were large indicating that there was high variability in the observed bias of our 

estimates (Figures 23–25). Protocols for naïve models always produced estimates of mean local 

abundance that were biased low (Figure 23, Appendix P). The survey protocol that required the 

fewest total point-counts (number of sites × number of visits) conducted for all scenarios was a 

protocol for visiting sites 4 times and analyzing the count data using N-mixture models (Figures 

26, 27, Table 17). Depending on the scenario the number of sites necessary varied between 60–

490.   

Generally, estimated precision increased with the number of sites and the number of 

replicate surveys per site (Appendix Q). For all models, as the probability of detection and/or 

abundance increased, the number of sites needing to be surveyed and total number of point-count 

surveys needing to be conducted decreased (Figures 26, 27; See Appendices P-T for all 

simulation results). The least number of surveys required occurred for scenarios with both high 

detection and high abundance (Figures 26, 27, Table 17). For example, for point-counts, under 

simulated conditions of high abundance (�̅� = 0.31 grouse per survey point) and average 

detection (�̅� = 0.37, for HDS σ = 43, for time-removal HDS σ = 42, availability = 0.65), 170 
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survey sites would need to be surveyed 4 times to obtain acceptably precise estimates of 

population size evaluated using an N-mixture model, 1,090 sites using hierarchical distance 

sampling and > 6,000 sites for time-removal HDS (Table 17). In contrast, for point-counts, under 

a high abundance (�̅� = 0.31 grouse per survey point) and high detection (�̅� = 0.57, for HDS 

model σ = 58, for time-removal HDS σ = 48, availability = 0.89) only 60 survey sites would 

need to be surveyed 4 times using an N-mixture model, 800 sites for HDS model for point-

counts, and 1,390 sites for time-removal HDS (Table 17).  

We found that the counts for the back-to-back point-counts (visits 1 and 2, and 3 and 4), 

there was evidence of positive correlation (r = 0.67, p < 0.05), while there was no evidence of 

correlation between the non-back-to-back visits (visits 1 and 3, 1 and 4, 2 and 3, and 2 and 4; 

Table 18). Using simulations, we evaluated the effects of correlated counts on abundance 

estimates produced by N-mixture models and found that when the true probability of detection 

was ≥ 0.57, the proposed sampling effort and protocol produced unbiased estimates of detection 

and local abundance (Table 19, Figure 28). We found modest upward bias in detection 

probability (approximately + 0.10–0.11) and low bias in local abundance (approximately -0.01– -

0.04 birds per survey area) when detection rates are ≤ 0.37, our average empirical probability of 

detection (Table 19, Figure 28). 

For line-transects survey protocols, the number of transects that needed to be visited was 

lower for longer transects (5,000 m) than shorter transects (2,681 m; Figure 29, 30; Appendix S). 

Under average abundance (5.73 Dusky Grouse per km2) and high detection probability (𝜎 = 51), 

for example, only 20 5000-m long transects were required to yield estimates of precision in 

abundance < 0.15 CV whereas 35 transects were needed when their length was 2,681 m. The 
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number of required survey transects declined as the probability of detection increased (Figure 29, 

30; Appendix S).  

When conducting point-count surveys, evaluated using N-mixture models, with six points 

located along a transect, less transects need to be visited than if conducting line-transect surveys 

under all high probability of detection scenarios. As an example, under the average abundance, 

high detection scenario, 14 transects are needed for the point-count protocol, while 35 are needed 

for transects of 2,681-m in length, and 20 for transects of 5,000-m in length (Table 20). Under 

average probability of detection scenarios, when conducting point-count surveys with six points 

located along a transect, the number of transects needing to be visited was lower or equal to that 

of the line-transect method when line transects were 2,681-m in length, and more than that when 

line transects were 5,000-m in length. For example, under the average abundance, average 

detection scenario, 40 transects are needed for the point-counts and transects 2,681-m in length 

while only 25 are needed for transects 5,000-m in length (Table 20).  

Power Analysis 

Survey protocols that yielded ≤ 15% CV in annual estimates of abundance did not have 

power to detect a 1% annual decline in abundance over 10 years but did have power (≥ 80%) to 

detect a 3% and 5% annual decline (Table 20). Over 5 years, we had power (≥ 80%) to detect a 

10% annual decline (Table 20). The average slope was close (within 0.08–1.08) to the target 

trend for each combination of year and annual decline (Table 21). A negative trend was predicted 

over 70% of the time for all combinations of 3%, 5%, and 10% annual declines, and after 5 years 

for a 1% annual decline (Tables 22). On average across the different scenarios the difference 
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between the annual trends estimated using the estimated abundance and the true abundance was 

small (Table 23). 

Discussion 

Through the evaluation of different sampling and analytical methods, we were able to 

identify survey protocols that are logistically feasible and provide unbiased and precise (CV ≤ 

15%) estimates of abundance, providing the necessary information for the development of a 

monitoring program for Dusky Grouse in Montana. While we found evidence of slightly lower 

abundance of grouse near roads and trails, the ability of field biologists to conduct surveys is 

more logistically feasible when these features can be used. Using simulations, we evaluated 

hundreds of potential protocols under six different realistic scenarios based on empirical 

estimates of abundance and probability of detection. We found that line-transect surveys 

evaluated using hierarchical distance sampling, as well as point-count protocols where sites are 

visited four times and counts are evaluated using N-mixture models yield acceptable accuracy 

and precision necessary for population monitoring of Dusky Grouse.   

Field Sampling 

We found that point-count surveys established along roads and trails resulted in reduced 

abundance (0.13–0.22 grouse per site) than those located away from roads and trails. However, 

the time and effort needed to access randomly selected off-trail survey locations was prohibitive 

in the mountainous Dusky Grouse habitats of Montana. Off-trail surveys took up to 8 hours to 

complete during the spring, whereas surveys conducted along roads and trails were easier to 

access and completed within a 4-hour period after sunrise when detection probability was 
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highest. Although surveys located along roads and trails may result in downward biased 

estimates of abundance, estimates adjusted for spatial and temporal variation in detection 

probability are useful and unbiased indices of population size. We were unable to evaluate 

whether local abundance was affected by the type of road or trail (e.g., paved v. unimproved 

road, non-motorized trails); nevertheless, we limited our subsequent population monitoring 

recommendations to unimproved roads and trails with low traffic.  

Comparison of Statistical Estimators of Abundance 

As expected, our analyses of simulated datasets demonstrated that estimated abundance is 

downward biased when detection probability is ignored (Thompson 2002). Hierarchical 

abundance models such as N-mixture models, HDS, and time-removal HDS all produced 

unbiased estimates of abundance regardless of simulated values of detection probability, 

demonstrating their potential utility in a Dusky Grouse monitoring program. We further 

examined how precise the estimates of abundance were, which narrowed the field of potential 

statistical estimators to 1) N-mixture models when survey points are visited four times, and 2) 

HDS when line-transects are surveyed in the spring for each area of inference (e.g., MFWP 

administrative region). The exact number of sites and transects required varied based on 

simulation scenario.  

Our results are generally consistent with simulation results of N-mixture models for other 

species and simulation studies in which increasing the number of plots and visits increased the 

precision of estimates (McIntyre et al. 2012, Yamuara 2013). As the number of visits increased 

from 2 to 4, for example, the requisite number of sites required to reach the desired level of 

precision decreased from 900 to 170 under the high abundance average detection scenario 
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(Appendix R). Similar to another study, we found that large improvements in estimator precision 

occurred as probability of detection increased (McIntyre et al 2012). We also found that our 

models performed well at low local abundances, with estimates more variable under lower local 

abundance and probability of detection (Yamaura 2013). 

The HDS models followed a similar trend to the N-mixture models; the requisite number 

of sites visited for our desired level of precision decreased as abundance or probability of 

detection increased. Despite this, even for point-count scenarios with relatively high abundance 

and detection, the HDS and time-removal HDS models required a prohibitively large number of 

survey sites that were not logistically feasible. At least 75 grouse observations are needed for 

accurate estimates of abundance using distance sampling, suggesting limited utility of distance 

sampling for point-count survey protocols of Dusky Grouse. When mean local abundance was 

average (e.g., 0.18 Dusky Grouse per point count) and detection was high, the number of sites 

necessary to obtain the necessary sample size to be able to obtain a precise abundance estimate is 

prohibitively large (1,360 survey points). Other simulations have shown that the precision for 

abundance estimates from time-removal HDS is low when probability of availability is low (≤ 

0.4; Amundson et al. 2014). While our average probability of availability (0.65) was higher than 

0.4, low grouse densities required prohibitively large number of survey points to be visited (> 

6,000) to achieve our desired level of precision. In short, our simulation results indicate that 

distance sampling models applied to grouse counts collected at point-counts will not provide 

suitably accurate and precise estimates of relative population size for management. 

Line transects analyzed using HDS required more achievable survey effort than did point-

counts. We examined the utility of transects of two different lengths and found that longer 
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transects required fewer sites be visited than the shorter transects, assuming Dusky Grouse are 

distributed randomly in relation to transect length. Nevertheless, longer transects take more time 

to survey and may have higher likelihood that parts of the transect may be inaccessible, 

especially early in the season due to snowpack. In comparison to point-counts analyzed using N-

mixture models, the shorter line-transects analyzed using HDS required a similar or greater 

number of transects visited. Due to the large credible intervals when examining bias for the 

abundance and detection parameters for line-transects analyzed using HDS in addition to needing 

greater survey effort, we recommend point-counts analyzed using N-mixture models over line-

transects analyzed using HDS. 

A potential limitation of N-mixture models is that sites must be surveyed multiple times 

within a period of closure. This repeated survey requirement presents logistical challenges for 

surveying Dusky Grouse in remote and mountainous habitats. To meet model assumptions of 

population closure while reducing the time and costs of accessing survey sites, we conducted 

four replicate visits of a survey site in a single morning. Conducting replicate visits as either 

consecutive point-counts or within the same morning, may violate an implicit assumption that 

visits are independent resulting in biased probabilities of detection and abundance. We found that 

when we evaluated the effect of correlated counts on probability of detection and abundance, that 

if probability of detection was high (≥ 0.57) then estimates of detection and abundance were still 

unbiased. Hence, when surveys are conducted under optimal conditions that lead to high 

probability of detection (Chapter 3), replicate visits can be conducted within a single morning 

negating logistical constraints that may limit the use of N-mixture models.  
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Power Analysis 

Our recommended protocol derived from the average abundance, high detection scenario 

(point-counts where 80 sites or 14 transects with 6 points per transect, are visited four times and 

evaluated using N-mixture models) had high power (≥ 80%) to detect average population 

declines of 3%, 5%, and 10% over 5–10-year periods, which was lower than expected given 

precision of annual abundance estimates were < 15%.  Nevertheless, we found that the estimated 

abundance trends were similar to the target trends, and close to the real trends estimated using 

the true simulated population size, suggesting that while there may be some uncertainty 

associated with the estimated trends, our protocols may be sufficient for long-term monitoring 

and able to detect small changes in population size in as little as 3 years. In addition, as the 

monitoring period increases (> 5 years), the power to detect small changes increases indicating 

that our protocols are appropriate for long-term monitoring of Dusky Grouse populations.    

Conclusions 

Precise and unbiased estimates of population size are important for effective conservation 

and management of Dusky Grouse. We used simulations to evaluate hundreds of potential 

protocols with different statistical estimators to design a program that produced unbiased and 

precise estimates of abundance that was logistically feasible for state wildlife agencies with 

multiple competing priorities. We also evaluated the impact of violating a model assumption that 

would prevent conducting back-to-back point-count surveys within a single morning, impacting 

logistic feasibility of survey methods. We recommend conducting spring point-count surveys 

during periods of high detection with electronic playback (Chapter 3) along low-use or seasonal-

use roads and trails, where sites are visited four times within a single morning and counts are 
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analyzed using N-mixture models. Periods of high detection can be characterized as days with no 

precipitation, limited cloud cover, no wind, areas with limited background noise, between sunrise 

and 10:00, and during 3–23 May (Chapter 3). While HDS is commonly used for population 

monitoring, we found that the number of sites required for point counts was prohibitive. When 

conducting line-transects, HDS remains a viable option, but still requires more survey effort than 

the recommended protocol where point-counts are conducted and analyzed using N-mixture 

models.  Our study provides the foundation for a Dusky Grouse monitoring program in Montana 

and illustrates a process for developing monitoring programs elsewhere for Dusky Grouse and 

other species.  
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Table 13. Estimates of local abundance with 95% confidence intervals for point counts 

conducted along different transect types: off trail (2019, n = 90), on roads (2020, n = 845, 2021, 

n = 744), and trails (2020, n = 803, 2021, n = 731). 

Route Type Year Estimate SE 95% Confidence Interval 

Road 2020 0.17 0.02 0.14–0.20 

Road 2021 0.14 0.01 0.12–0.17 

Trail 2020 0.19 0.16 0.16–0.23 

Trail 2021 0.23 0.02 0.20–0.27 

Off-trail 2019 0.36 0.13 0.18–0.73 

Table 14. Estimates for MFWP regional local abundance (grouse per survey site) evaluated using 

single season N-mixture models. Average lambda/local abundance was estimated using a model 

where abundance and detection were both held constant. MFWP regional local abundances were 

estimated using a model where local abundance was varied by region and detection was held 

constant. 

Parameter Estimate SE 

95% confidence 

interval 

Region 1 λ 0.13 0.02 0.10–0.17 

Region 2 λ 0.31 0.03 0.27–0.37 

Region 3 λ 0.19 0.02 0.16–0.23 

Region 4 λ 0.08 0.01 0.06–0.11 

Region 5 λ 0.21 0.02 0.17–0.26 

Average λ 0.18 0.01 0.17–0.20 

Table 15. Estimates for MFWP regional local abundance evaluated using hierarchical distance 

sampling models. Average lambda/local abundance was estimated using a model where 

abundance and detection were both held constant. MFWP regional local abundances were 

estimated using a model where local abundance was varied by region and detection was held 

constant. 

Parameter Estimate SE 95% confidence interval 

Region 1 λ 0.12 0.03 0.08–0.19 

Region 2 λ 0.36 0.05 0.27–0.47 

Region 3 λ 0.21 0.03 0.15–0.29 

Region 4 λ 0.07 0.02 0.04–0.12 

Region 5 λ 0.23 0.04 0.16–0.33 

Average λ 0.20 0.02 0.16–0.24 
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Table 16. Parameter estimates used to inform simulation scenarios. Abundance estimates were 

used to inform scenarios for both single-season N-mixture and hierarchical distance sampling 

models. 𝜎 was used to inform the detection function for all the hierarchical distance sampling 

models, detection was used to inform the probability of detection for the single-season N-mixture 

models, and availability was used to inform the probability of availability for the time-removal 

HDS models. PC = point-count survey, Line = line-transect survey 

Model Survey 

Type 

Parameter Estimate 

All - Low 𝜆 0.08 

All - Average 𝜆 0.18 

All - High 𝜆 0.31 

N-mixture PC Average 𝑝 0.37 

N-mixture PC High 𝑝 0.57 

Hierarchical distance sampling PC Average 𝜎 43 

Hierarchical distance sampling PC High 𝜎 58 

Time-removal HDS PC Average 𝜎 43 

Time-removal HDS PC High 𝜎 48 

Time-removal HDS PC Average 𝜙 0.65 

Time-removal HDS PC High 𝜙  0.89 

Hierarchical distance sampling Line Average 𝜎 42 

Hierarchical distance sampling Line High 𝜎 51 
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Table 17. From the simulation results, the number of visits, sites to be surveyed, total number of 

point counts to be conducted, and the potential number of transects (if there are 6 points on each 

transect) for providing robust population estimates using N-mixture models (point counts), 

hierarchical distance sampling (point counts and transects), and time-removal HDS under 6 

different scenarios. HA = high abundance, average detection, AA = average abundance, average 

detection, LA = low abundance, average detection, HH = high abundance, high detection, AH = 

average abundance, high detection, LH = low abundance, high detection. Simulations were only 

conducted under 2 scenarios for the time-removal HDS. The transect length evaluated was 

2,681m (the average transect length for 2020 and 2021).  

Scenario Model 

# of 

Visits # of Sites 

# of Point 

Counts 

Transect 

(6pts) 

HA 

N-mixture point count 4 170 680 29 

HDS point count 1 1,090 1,090 182 

Time-removal HDS point count 1 > 6,000 > 6,000 > 1,000 

HDS transect: 2,681m 1 25 NA 25 

HDS transect: 5,000m 1 15 NA 15 

AA 

N-mixture point count 4 240 960 40 

HDS point count 1 1870 1870 312 

Time-removal HDS point count 1 NA NA NA 

HDS transect: 2,681m 1 40 NA 40 

HDS transect: 5,000m 1 25 NA 25 

LA 

N-mixture point count 4 490 1960 82 

HDS point count 1 4230 4230 705 

Time-removal HDS point count 1 NA NA NA 

HDS transect: 2,681m 1 90 NA 90 

HDS transect: 5,000 1 50 NA 50 

HH 

N-mixture point count 4 60 240 10 

HDS point count 1 800 800 134 

Time-removal HDS point count 1 1390 1390 232 

HDS transect: 2,681m 1 20 NA 20 

HDS transect: 5,000m 1 15 NA 15 

AH 

N-mixture point count 4 80 320 14 

HDS point count 1 1360 1360 227 

Time-removal HDS point count 1 NA NA NA 

HDS transect: 2,681m 1 35 NA 35 

HDS transect: 5,000m 1 20 NA 20 

LH 

N-mixture point count 4 140 560 24 

HDS point count 1 3110 3110 519 

Time-removal HDS point count 1 NA NA NA 

HDS transect: 2,681m 1 70 NA 70 

HDS transect: 5,000m 1 40 NA 40 
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Table 18. Correlation matrix for correlation between point counts for combined 2020 and 2021 

data. Point counts 1 and 2, and point counts 3 and 4 are conducted back-to-back. All point counts 

occurred on the same day. 

 Point Count 1 Point Count 2 Point Count 3 Point Count 4 

Point Count 1 1.00 0.67 0.41 0.44 

Point Count 2 - 1.00 0.48 0.47 

Point Count 3 - - 1.00 0.67 

Point Count 4 - - - 1.00 



 

 

 

1
1
7
 

Table 19. Results of simulations evaluating the effects of correlation between point counts for the recommended protocols for the N-

mixture models under 6 different scenarios. Mean (90% credible interval) for bias and coefficient of variation from 500 simulation 

runs for each suite of parameters. Different scenarios include combinations of high, average, and low abundance paired with either 

average or high detection. R = number of survey sites, λ = mean abundance per site, 𝜎 = mean 𝜎, p.avail = mean probability of 

availability; CV = coefficient of variation for total population size (Total N) and N.site = estimated number of Dusky Grouse per 

survey site. 
Simulation 

Parameters 

Bias in λ Bias in p Bias in Total N Bias in N.site 
CV Total 

N 

Probability 

CV 

 N.total  

> 0.15 

Protocol 

meets 

 Management 

 equirements 
R  J  λ p 

170 4 0.31 0.37 
-0.04 (-0.11, 

0.03) 

0.10 (0.05, 

0.16) 

-6.80 (-13.46, -

0.91) 

-0.04 (-0.08, -

0.01) 

0.07 (0.05, 

0.09) 
0.00 yes 

240 4 0.18 0.37 
-0.02 (-0.07, 

0.02) 

0.10 (0.05, 

0.15) 

-5.69 (-11.41, -

0.49) 

-0.02 (-0.05, 

0.00) 

0.07 (0.05, 

0.09) 
0.00 yes 

490 4 0.08 0.37 
-0.01 (-0.03, 

0.01) 

0.11 (0.06, 

0.16) 

-4.73 (-9.50, -

0.05) 

-0.01 (-0.02, 

0.00) 

0.07 (0.05, 

0.09) 
0.00 yes 

60 4 0.31 0.57 0.00 (-0.13, 0.13) 
-0.04 (-0.13, 

0.04) 
0.41 (-2.22, 2.62) 0.01 (-0.04, 0.04) 

0.10 (0.06, 

0.15) 
0.05 yes 

80 4 0.18 0.57 0.01 (-0.06, 0.09) 
-0.04 (-0.13, 

0.03) 
0.33 (-1.68, 1.99) 0.00 (-0.02, 0.02) 

0.10 (0.07, 

0.16) 
0.07 yes 

140 4 0.08 0.57 0.00 (-0.03, 0.04) 
-0.05 (-0.13, 

0.02) 
0.26 (-1.40, 1.48) 0.00 (-0.01, 0.01) 

0.11 (0.07, 

0.17) 
0.16 yes-ish 

Table 20. Predicted power for a protocol where 80 sites are visited 4 times and abundances are estimated using an N-mixture model. 

Power was examined for a 1, 3, 5, and 10% annual decline over a period of 3, 5, and 10 years. A 10% decline over 10 years was not 

evaluated as sufficient power was reached after a period of 5 years..  

Annual Decline 3 years 5 years 10 years 

1% 8.2 14.4 39.2 

3% 19 40.6 80.8 

5% 26.8 61 94.6 

10% 49.6 87.2 NA 
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Table 21. Mean estimated slopes for predicted annual trend for a protocol where 80 sites are 

visited 4 times and abundances are estimated using an N-mixture model. Trend were examined 

for 1, 3, 5, and 10% annual declines over a period of 3, 5, and 10 years. 95% confidence intervals 

are calculated using a quantile of 0.025 and 0.975. A 10% decline over 10 years was not 

evaluated. 

Annual Decline 3 years 5 years 10 years 

1% -1.13 (-8.29, 5.94) -1.18 (-6.13, 2.78) -1.08 (-3.75, 0.84) 

3% -3.58 (-12.82, 4.38) -3.17 (-9.32, 1.63) -3.21 (-7.81, -0.1) 

5% -5.3 (-16.25, 3.68) -5.39 (-13.89, -0.08) -5.24 (-11.1, -1.16) 

10% -11.08 (-26.6, -0.11) -10.73 (-21.34, -0.07) NA 

Table 22. Percent of estimated slopes < 0 for predicted annual trend for a protocol where 80 sites 

are visited 4 times and abundances are estimated using an N-mixture model. Trends were 

examined for 1, 3, 5, and 10% annual declines over a period of 3, 5, and 10 years. A 10% decline 

over 10 years was not evaluated. 

Annual Decline 3 years 5 years 10 years 

1% 60.6 71 80.8 

3% 78.8 88.4 97.6 

5% 84.4 97.8 99 

10% 97.4 98.2 NA 
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Table 23. Difference between the estimated slopes for predicted annual trend for true abundance and estimated abundances for a 

protocol where 80 sites are visited 4 times and abundances are estimated using N-mixture model. Trends were examined for 1, 3, 5, 

and 10% annual declines over a period of 3, 5 and 10 years. A 10% decline over 10 years was not evaluated.   

Annual Decline 3 years 5 years 10 years 

1% -0.0005 (-0.0618, 0.0656) -0.0012 (-0.0406, 0.0358) -0.0003 (-0.0138, 0.0137) 

3% -0.0030 (-0.0723, 0.0632) -0.0001 (-0.0399, 0.0350) 0.0007 (-0.0152, 0.0167) 

5% 0.0018 (-0.0637, 0.0695) 0.0009 (-0.0343, 0.0.371) 0.0011 (-0.0161, 0.0201) 

10% -0.0007 (-0.0801, 0.0720) 0.0014 (-0.0400, -0.0468) NA 
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Figure 19. Local abundance estimates evaluated using single season N-mixture models of Dusky 

Grouse with 95% confidence intervals for point counts conducted along different route types: 

off-trail, road, and trail. Data for the off-trail transects come from the 2019 pilot year surveys 

conducted in MFWP region 3. Data for the road and trail transects comes from the 2020 and 

2021 surveys conducted across western Montana. 
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Figure 20. Abundance estimates per point count with 95% confidence intervals across MFWP 

Regions 1-5 based on N-mixture and hierarchical distance sampling model where detection (p or 

𝜎) was held constant and abundance was allowed to vary by region. There is also average 

abundance from N-mixture and hierarchical distance sampling  models where both detection (p 

or 𝜎) and abundance were held constant. 
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Figure 21. Effect of day during the survey season on probability of detection, 𝜎, or availability for 4 models. 3 models for point 

counts: N-mixture, hierarchical distance sampling, time-removal HDS, and 1 model for line transects: hierarchical distance sampling. 

Probability of detection was highest for the N-mixture model on day 34 (May 13th, 𝜎 was highest for the hierarchical distance 

sampling for point counts on day 31 (May 10th), 𝜎 was highest for hierarchical distance sampling for line transects on day 30 (May 

9th), and availability was highest on day 33 (May 12th) for time-removal HDS models.
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Figure 22. Abundance estimates per point count with 95% confidence intervals across MFWP 

Regions 1-5 based on hierarchical distance sampling models with a half-normal detection 

function and a hazard-rate detection function where detection (𝜎) was held constant and 

abundance was allowed to vary by region. There is also average abundance from the distance 

sampling models where both detection (𝜎) and abundance were held constant.  
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Figure 23. Parameter bias with 90% credible intervals over 500 simulations under 6 scenarios with varying abundance and detection/ 
𝜎. Parameters are average local/point count abundance (lambda) and abundance at each site (N.site). Scenarios include, HA = high 

abundance, average detection, AA = average abundance, average detection, LA = low abundance, average detection, HH = high 

abundance, high detection, AH = average abundance, high detection, and LH = low abundance, high detection. There are 8 models 

evaluated: HDS = hierarchical distance sampling for point counts, HDS.TR = time-removal HDS, Line.5000 = hierarchical distance 

sampling for line transects 5000m in length, Line.Average = hierarchical distance sampling for line transects of average (2,681m) 

length, Naïve = naïve model, and NM with varying visits = N-mixture model with either 2, 3, or 4 visits. 
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Figure 24. Bias with 90% credible intervals over 500 simulations under 6 scenarios with varying abundance and detection/ 𝜎 for 

probability of detection (N-mixture model) and 𝜎 (all hierarchical distance sampling models). Scenarios include, HA = high 

abundance, average detection, AA = average abundance, average detection, LA = low abundance, average detection, HH = high 

abundance, high detection, AH = average abundance, high detection, and LH = low abundance, high detection. There 7 models 

evaluated: HDS = hierarchical distance sampling for point counts, HDS.TR = time-removal HDS, Line.5000 = hierarchical distance 

sampling for line transects 5000m in length, Line.Average = hierarchical distance sampling for line transects of average (2,681m) 

length, and NM with varying visits = N-mixture model with either 2, 3, or 4 visits. 
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Figure 25. Bias with 90% credible intervals over 500 simulations under 6 scenarios with varying abundance and detection/ 𝜎 for total 

population size (Total N). Scenarios include, HA = high abundance, average detection, AA = average abundance, average detection, 

LA = low abundance, average detection, HH = high abundance, high detection, AH = average abundance, high detection, and LH = 

low abundance, high detection. There 7 models evaluated: HDS = hierarchical distance sampling for point counts, HDS.TR = time-

removal HDS, Line.5000 = hierarchical distance sampling for line transects 5000m in length, Line.Average = hierarchical distance 

sampling for line transects of average (2,681m) length, and NM with varying visits = N-mixture model with either 2, 3, or 4 visits.
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Figure 26. Coefficient of variation with 90% credible intervals for estimates of population size 

for number of sites visited under different protocols for N-mixture and hierarchical distance 

sampling models under different scenarios with varying abundance and average detection. For 

the N-mixture model, protocols with 2, 3, or 4 visits are evaluated. NM = N-mixture model, HDS 

= hierarchical distance sampling model, HDS TR = time-removal HDS. Horizontal line 

represents the goal of a coefficient of variation of 0.15 or lower.  
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Figure 27. Coefficient of variation with 90% credible intervals for estimates of population size 

for number of sites visited under different protocols for N-mixture and hierarchical distance 

sampling models under different scenarios with varying abundance and high detection. For the 

N-mixture model, protocols with 2, 3, or 4 visits are evaluated. NM = N-mixture model, HDS = 

hierarchical distance sampling model, HDS TR = time-removal HDS. Horizontal line represents 

the goal of a coefficient of variation of 0.15 or lower.  
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Figure 28. Bias with 90% credible intervals over 500 simulations under 6 scenarios with varying 

abundance and detection/ 𝜎 for total population size (Total N) for N-mixture models with 

correlated counts. Scenarios are HA = high abundance, average detection, AA = average 

abundance, average detection, LA = low abundance, average detection, HH = high abundance, 

high detection, AH = average abundance, high detection, and LH = low abundance, high 

detection. Models evaluated are the ‘best’ protocols from the N-mixture models with 4 visits. 
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Figure 29. Coefficient of variation with 90% credible intervals for average transect length 

(2,681m) and 5,000m transect length across differing number of sites visited for three different 

scenarios where probability of detection was average and abundance varied (high, average, and 

low).
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Figure 30. Coefficient of variation with 90% credible intervals for average transect length 

(2,681m) and 5,000m transect length across differing number of sites visited for three different 

scenarios where probability of detection was high and abundance varied (high, average, and 

low).
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CONCLUSION 

Population monitoring is an important aspect of conservation and management. Without 

accurate estimates of abundance, trends, and distributions, managers cannot effectively make 

conservation decisions, understand population trends, or assess changes in a species’ range 

(Guisan et al. 2006, Joseph et al. 2009, Sillett et al. 2012, Sofaer et al. 2019). Understanding the 

relationship between environmental conditions, management actions and policies, and a species’ 

population trend or distribution allows managers to make appropriate decisions for meeting 

management goals (Guisan et al. 2006, Sofaer et al. 2019, Doser et al. 2021). Population 

monitoring of game species is especially important, as information on population status, trends, 

and distributions affects harvest regulations (Aebischer and Baines 2008, Sands and Pope 2010). 

Due to limited resources, population monitoring programs must be developed and evaluated so 

that they provide the desired information while operating within resource constraints (Witmer 

2005, Weiser et al. 2019).  

Basic information such as population status, trends, habitat associations, and fine-scale 

distribution is lacking for Dusky Grouse, impeding the ability of managers to effectively make 

management decisions and designate appropriate hunting regulations. Our goal was to develop 

and test field methods and analyses for population monitoring of Dusky Grouse in Montana. To 

be useful for management, a standardized survey protocol must produce an unbiased and precise 

estimate/index of abundance or density that is relatively easy to describe and implement. 

Estimates are deemed precise and useful for informing management when they have ≤15% 

coefficient of variation. To provide recommendations for the creation of a Dusky Grouse 

population monitoring program in Montana, we 1) developed a species distribution model to 
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inform survey locations and explore habitat associations for Dusky Grouse, 2) surveyed Dusky 

Grouse across their range in Montana during different sampling periods using a variety of survey 

techniques and identified survey conditions and sampling methods that maximized detection, and 

3) evaluated the ability of four statistical estimators under different abundance, detection, and 

survey effort scenarios to produce unbiased and precise estimates of abundance that met 

monitoring goals.  

Using multiple techniques and an ensemble approach, we developed a species 

distribution model of potential Dusky Grouse habitat that had high predictive accuracy. As 

expected, we found that the MFWP Regions 1–3 had the most predicted Dusky Grouse habitat, 

as these areas of Montana are dominated by mountainous and coniferous forests. We also 

predicted Dusky Grouse habitat in similar areas (e.g., mountainous and coniferous forests) of 

MFWP Regions 4–5. We found that Dusky Grouse were strongly associated with increased 

coverage of mid-old growth coniferous forest dominated by Douglas fir, lodgepole pine, and 

ponderosa pine, which corresponds with previous field-based documentation of Dusky Grouse 

habitat (Marshall 1946, Martinka 1972, Cade and Hoffman 1990, Cade and Hoffman 1993). The 

concurrence between previous field-based habitat associations for Dusky Grouse and our model 

results supported the validity of our predictive model.  

We used two techniques when creating our ensemble model for Dusky Grouse 

distribution: resource selection functions and random forest. While both the random forest model 

and resource selection function model had high predictive accuracy, predictive accuracy was 

highest for the ensemble model. Even in MFWP Regions with no training data, such as MFWP 

Region 5, the models were still able to accurately predict the MFWP dataset of Dusky Grouse 
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locations as potential habitat. Given the model’s high predictive accuracy and similarity in 

predicted habitat associations to those described in the literature, the model is usable for 

delineating survey sites for population monitoring. We used this model to determine study sites 

for evaluating different sampling and analytical methods for estimating Dusky Grouse 

abundance.  

We found that sampling protocol affected the probability of detection for Dusky grouse 

and that methods traditionally used for grouse population monitoring may not be effective for 

Dusky Grouse monitoring in Montana. Dusky Grouse detections during the summer were almost 

non-existent, and spring surveys with electronic playback had much greater numbers of Dusky 

Grouse observations. Using chick distress calls for summer brood surveys has previously been 

found to elicit visual and auditory responses from females with broods (Stirling and Bendell 

1966), but we did not find this to be the case. In line with previous studies, using female grouse 

calls (cackle and cantus) during the spring breeding season increased Dusky Grouse responses 

(Stirling and Bendell 1966, Harju 1974).  

Temporal and environmental conditions such as day, minutes post sunrise, noise level, 

cloud cover, and temperature affected probability of detection of Dusky Grouse. Background 

noise level likely affected the ability of an observer to detect a grouse, as the majority of our 

detections were auditory. Most studies reported that, without electronic playback, the probability 

of detection is expected to peak with breeding behavior during the last week of April and first 

week of May in Montana, and around sunrise (Mussehl 1960, Mussehl 1963b, Bendell and Elliot 

1967, Farnsworth 2020). One study demonstrated that using electronic playback kept the 

probability of detection consistent (Farnsworth 2020). However, we found that probability of 
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detection still peaked when electronic playback was used, and that the peaks in detection 

occurred on 3 May–23 May and 9–162 minutes post-sunrise. Previously studies have found 

variable associations between cloud cover and probability of detection for grouse (Evans et al. 

2007, Farnsworth 2020), and we found that cloud cover negatively impacted Dusky Grouse 

detection. Detection was highest on clear days and lowest on days that were partly cloudy to 

fully overcast. We found the effect of temperature to be uncertain. Precipitation and wind speed 

did not show up in our top model due to being controlled for by the survey protocol and thus not 

having high variation during surveys. Optimal survey conditions were considered to be clear 

days with little cloud cover, wind, and no precipitation, during days and times of peak detection 

(e.g. 3 May–23 May and 9–162 minutes post-sunrise). 

We identified two survey protocols and analyses that met our goal of producing unbiased 

estimates of abundance with a coefficient of variation ≤ 15% during periods of optimal survey 

conditions. The first protocol is a point-count survey protocol with 80 points per region and 

requires repeated (4) surveys at each point within a short period of time, as well as the use of 

recordings of female calls (cantus and cackle) to increase and estimate site-specific detection 

probabilities. This protocol and analysis resulted in precise enough estimates of an annual 

population index to be useful for monitoring and management. The second survey protocol is 

based on a line-transect distance sampling approach in which observers walk a 2.6–5 km transect 

and record the perpendicular distance from the transect to each grouse observation. Both survey 

protocols resulted in unbiased estimates of population abundance or density. The repeated point 

count protocol resulted in higher precision than the distance sampling protocol. However, 
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estimated precision of the distance sampling protocol met our monitoring goals when at least 35 

transects of ≥ 2.6 km were surveyed in each area of inference (e.g., MFWP Region).  

Management Recommendations 

Our habitat model can be used to delineate survey sites for monitoring Dusky Grouse in 

Montana. To maximize detection and lower the amount of observer effort needed, we 

recommend conducting surveys during the spring breeding season using female cackle and 

cantus calls. Surveying under optimal conditions is necessary for maximizing probability of 

detection, and therefore we recommend surveying between 3 May–23 May, and from sunrise to 

2.5–3 hours post-sunrise. Surveys should occur on days with no precipitation and little to no 

wind. Probability of detection should also be estimated as a function of day, minutes since 

sunrise, background noise level, cloud cover, and temperature. Compared to line-transects, only 

a third of the needed transects are required for point-count surveys, and therefore we recommend 

a protocol of surveying 80 sites 4 times within a single morning, 2 surveys back-to-back on the 

way down the transect and 2 on the return transect. Counts should be analyzed using N-mixture 

models.  

 Population monitoring of Dusky Grouse will allow managers to track abundance and 

population status at the state level, as well investigate the impacts of management actions (e.g., 

timber harvest) on Dusky Grouse populations. In addition, the data from population management 

will allow managers to justify hunting regulations for Dusky Grouse. Based on the results of our 

study, the Montana Department of Fish, Wildlife and Parks should be able to implement a 

population monitoring program for Dusky Grouse.  
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Table A1. Description of habitat variables (LANDFIRE 2016a, b, c). 

Variable Source 

EVT Code 

(Ecological 

Systems) 

Statistic 
Vegetation 

Physiognomy 

North (N) Facing Aspect DEM N/A Proportion N/A 

Northeast (NE) Facing Aspect DEM N/A Proportion N/A 

East (E) Facing Aspect DEM N/A Proportion N/A 

Southeast (SE) Facing Aspect DEM N/A Proportion N/A 

South (S) Facing Aspect DEM N/A Proportion N/A 

Southwest (SW) Facing Aspect DEM N/A Proportion N/A 

West (W) Facing Aspect DEM N/A Proportion N/A 

Northwest (NW) Facing Aspect DEM N/A Proportion N/A 

Flat Aspect DEM N/A Proportion N/A 

Slope DEM N/A mean N/A 

Elevation (km) DEM N/A mean N/A 

Distance (km) to Nearest Road MSDI N/A mean N/A 

Distance (km) to Nearest Stream MSDI N/A mean N/A 

Distance (km) to Forest Edge From Outside of the Forest EVT N/A mean N/A 

Distance (km) to Forest Edge From Inside of the Forest EVT N/A mean N/A 

Northern Rocky Mountain Western Larch Savanna EVT 7010 Proportion Conifer 

Rocky Mountain Aspen Forest and Woodland EVT 7011 Proportion Hardwood 

Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest EVT 7045 Proportion Conifer 

Northern Rocky Mountain Subalpine Woodland and Parkland EVT 7046 Proportion Conifer 

Northern Rocky Mountain Mesic Montane Mixed Conifer Forest EVT 7047 Proportion Conifer 

Rocky Mountain Foothill Limber Pine-Juniper Woodland EVT 7049 Proportion Conifer 

Rocky Mountain Lodgepole Pine Forest EVT 7050 Proportion Conifer 

Northern Rocky Mountain Ponderosa Pine Woodland and Savanna EVT 7053 Proportion Conifer 

Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland EVT 7055 Proportion Conifer 

Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland EVT 7056 Proportion Conifer 

Inter-Mountain Basins Big Sagebrush Shrubland EVT 7080 Proportion Shrubland 

Northern Rocky Mountain Montane-Foothill Deciduous Shrubland EVT 7106 Proportion Shrubland 

Inter-Mountain Basins Big Sagebrush Steppe EVT 7125 Proportion Shrubland 

Inter-Mountain Basins Montane Sagebrush Steppe EVT 7126 Proportion Shrubland 
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Northern Rocky Mountain Lower Montane-Foothill-Valley Grassland EVT 7139 Proportion Grassland 

Northern Rocky Mountain Subalpine-Upper Montane Grassland EVT 7140 Proportion Grassland 

Rocky Mountain Subalpine-Montane Mesic Meadow EVT 7145 Proportion Grassland 

Northern Rocky Mountain Foothill Conifer Wooded Steppe EVT 7165 Proportion Conifer 

Middle Rocky Mountain Montane Douglas-fir Forest and Woodland EVT 7166 Proportion Conifer 

Northern Rocky Mountain Subalpine Deciduous Shrubland EVT 7169 Proportion Shrubland 

Recently Logged-Herb and Grass Cover EVT 7191 Proportion Grassland 

Recently Logged-Shrub Cover EVT 7192 Proportion Shrubland 

Recently Logged-Tree Cover EVT 7193 Proportion Conifer 

Recently Burned-Herb and Grass Cover EVT 7195 Proportion Grassland 

Recently Burned-Tree Cover EVT 7197 Proportion Conifer 

Open Water EVT 7292 Proportion Open Water 

Developed-Roads EVT 7299 Proportion Developed-Roads 

Western Cool Temperate Pasture and Hayland EVT 7967 Proportion Agricultural 

Western Cool Temperate Wheat EVT 7968 Proportion Agricultural 

Northern Rocky Mountain Lower Montane Riparian Woodland EVT 9012 Proportion Riparian 

Rocky Mountain Alpine-Montane Wet Meadow EVT 9017 Proportion Riparian 

Rocky Mountain Cliff Canyon and Massive Bedrock EVT 9018 Proportion Sparsely Vegetated 

Rocky Mountain Subalpine-Montane Riparian Woodland EVT 9022 Proportion Riparian 

Interior Western North American Temperate Ruderal Shrubland EVT 9328 Proportion Exotic Tree-Shrub 

Northern Rocky Mountain Lower Montane Riparian Shrubland EVT 9512 Proportion Riparian 

Interior Western North American Temperate Ruderal Grassland EVT 9828 Proportion Exotic Herbaceous 

no vegetation present EVC N/A Proportion N/A 

canopy cover from sparse vegetation EVC N/A Proportion N/A 

canopy cover from agricultural crops EVC N/A Proportion N/A 

developed areas EVC N/A Proportion N/A 

Tree Canopy Cover 10-19% EVC N/A Proportion N/A 

Tree Canopy Cover 20-29% EVC N/A Proportion N/A 

Tree Canopy Cover 30-39% EVC N/A Proportion N/A 

Tree Canopy Cover 40-49% EVC N/A Proportion N/A 

Tree Canopy Cover 50-59% EVC N/A Proportion N/A 

Tree Canopy Cover 60-69% EVC N/A Proportion N/A 

Tree Canopy Cover 70-79% EVC N/A Proportion N/A 
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Tree Canopy Cover 80-88% EVC N/A Proportion N/A 

Shrub Canopy Cover 10-19% EVC N/A Proportion N/A 

Shrub Canopy Cover 20-29% EVC N/A Proportion N/A 

Shrub Canopy Cover 30-39% EVC N/A Proportion N/A 

Shrub Canopy Cover 40-49% EVC N/A Proportion N/A 

Herb Canopy Cover 10-19% EVC N/A Proportion N/A 

Herb Canopy Cover 20-29% EVC N/A Proportion N/A 

Herb Canopy Cover 30-39% EVC N/A Proportion N/A 

Herb Canopy Cover 40-49% EVC N/A Proportion N/A 

Herb Canopy Cover 50-59% EVC N/A Proportion N/A 

Herb Canopy Cover 60-69% EVC N/A Proportion N/A 

Herb Canopy Cover 70-79% EVC N/A Proportion N/A 

Tree Height 1-5m EVH N/A Proportion N/A 

Tree Height 6-10m EVH N/A Proportion N/A 

Tree Height 11-15m EVH N/A Proportion N/A 

Tree Height 16-20m EVH N/A Proportion N/A 

Tree Height 21-26m EVH N/A Proportion N/A 

Shrub Height 0.1-0.5m EVH N/A Proportion N/A 

Shrub Height shrubs 0.6-1m EVH N/A Proportion N/A 

Shrub Height 1.1-1.5m EVH N/A Proportion N/A 

Shrub Height 1.6-2.0m EVH N/A Proportion N/A 

Herb Height 0.1-0.5m EVH N/A Proportion N/A 

Herb Height 0.6-1m tall EVH N/A Proportion N/A 
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Table A2. Description of variables used to create a forest layer for Montana (LANDFIRE 2016a). 
EVT code  

(ecological 

systems) 

Existing Vegetation Type 

 (ecological systems name) 

Vegetation  

Physiognomy 

Collapsed Vegetation  

Type Name 

7010 Northern Rocky Mountain Western Larch Savanna Conifer Western Larch Forest and Woodland 

7045 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest Conifer 
Douglas-fir-Ponderosa Pine-Lodgepole Pine 

Forest and Woodland 

7046 Northern Rocky Mountain Subalpine Woodland and Parkland Conifer Subalpine Woodland and Parkland 

7047 Northern Rocky Mountain Mesic Montane Mixed Conifer Forest Conifer 
Douglas-fir-Grand Fir-White Fir Forest and 

Woodland 

7049 Rocky Mountain Foothill Limber Pine-Juniper Woodland Conifer Limber Pine Woodland 

7050 Rocky Mountain Lodgepole Pine Forest Conifer Lodgepole Pine Forest and Woodland 

7053 Northern Rocky Mountain Ponderosa Pine Woodland and Savanna Conifer 
Ponderosa Pine Forest, Woodland and 

Savanna 

7055 Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland Conifer Spruce-Fir Forest and Woodland 

7056 Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland Conifer Spruce-Fir Forest and Woodland 

7057 
Rocky Mountain Subalpine-Montane Limber-Bristlecone Pine 

Woodland 
Conifer Limber Pine Woodland 

7062 Inter-Mountain Basins Curl-leaf Mountain Mahogany Woodland Conifer 
Mountain Mahogany Woodland and 

Shrubland 

7165 Northern Rocky Mountain Foothill Conifer Wooded Steppe Conifer Douglas-fir Forest and Woodland 

7166 Middle Rocky Mountain Montane Douglas-fir Forest and Woodland Conifer Douglas-fir Forest and Woodland 

7167 Rocky Mountain Poor-Site Lodgepole Pine Forest Conifer Lodgepole Pine Forest and Woodland 

7179 
Northwestern Great Plains-Black Hills Ponderosa Pine Woodland and 

Savanna 
Conifer 

Ponderosa Pine Forest, Woodland and 

Savanna 

7193 Recently Logged-Tree Cover Conifer Transitional Forest Vegetation 

7197 Recently Burned-Tree Cover Conifer Transitional Forest Vegetation 

7200 Recently Disturbed Other-Tree Cover Conifer Transitional Forest Vegetation 

7061 Inter-Mountain Basins Aspen-Mixed Conifer Forest and Woodland Conifer-Hardwood Aspen-Mixed Conifer Forest and Woodland 

7009 Northwestern Great Plains Aspen Forest and Parkland Hardwood Aspen Forest, Woodland, and Parkland 

7011 Rocky Mountain Aspen Forest and Woodland Hardwood Aspen Forest, Woodland, and Parkland 

7161 Northern Rocky Mountain Conifer Swamp Riparian Spruce-Fir Forest and Woodland 

9019 Rocky Mountain Lower Montane-Foothill Riparian Woodland Riparian Western Riparian Woodland and Shrubland 

9022 Rocky Mountain Subalpine-Montane Riparian Woodland Riparian Western Riparian Woodland and Shrubland 
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APPENDIX B 

APPENDIX B: UNCERTAINTY MAPS FOR RSF MODEL 
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Figure B1. Uncertainty maps for the RSF model. Map A (top) represents a map created using the 

high confidence intervals for the RSF’s beta estimates and then converted to a binary map using 

the same threshold as used when creating the RSF binary map. Map B represents a map created 

using the low confidence intervals for the RSF’s beta estimates, following the same methodology 

used to create map A.  
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APPENDIX C 

APPENDIX C: MODEL SUPPORT FOR EVALUATING OVERDISPERSION 
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Table C1. Support for candidate models predicting abundance and probability of detection 

estimates using N-mixture models for surveys conducted without electronic playback for spring 

2019 pilot season. Three different abundance distributions are examined: Poisson distribution, 

negative binomial distribution, and zero-inflated Poisson distribution. The number of parameters 

(K), AIC values, Δ AIC values, and model weights (wi) are reported. 

Model K AIC Δ AIC wi 

Poisson distribution 2 120.08 0.00 0.47 

Zero-inflated Poisson distribution 3 121 0.91 0.3 

Negative Binomial distribution 3 121.53 1.45 0.23 

Table C2. Support for candidate models predicting abundance and probability of detection 

estimates using N-mixture models for surveys conducted with electronic playback for spring 

2019 pilot season. Three different abundance distributions are examined: Poisson distribution, 

negative binomial distribution, and zero-inflated Poisson distribution. The number of parameters 

(K), AIC values, Δ AIC values, and model weights (wi) are reported. 

Model K AIC Δ AIC wi 

Poisson distribution 2 171.72 0.00 0.47 

Zero-inflated Poisson distribution 3 172.59 0.87 0.3 

Negative Binomial distribution 3 173.19 1.47 0.23 

Table C3. Support for candidate models predicting abundance and probability of detection 

estimates using N-mixture models for surveys conducted without electronic playback for 

summer 2019 pilot season. Three different abundance distributions are examined: Poisson 

distribution, negative binomial distribution, and zero-inflated Poisson distribution. The number 

of parameters (K), AIC values, Δ AIC values, and model weights (wi) are reported. 

Model K AIC Δ AIC wi 

Poisson distribution 2 47.18 0.00 0.58 

Zero-inflated Poisson distribution 3 49.18 2.00 0.21 

Negative Binomial distribution 3 49.18 2.00 0.21 

Table C4. Support for candidate models predicting abundance and probability of detection 

estimates using N-mixture models for surveys conducted with electronic playback for summer 

2019 pilot season. Three different abundance distributions are examined: Poisson distribution, 

negative binomial distribution, and zero-inflated Poisson distribution. The number of parameters 

(K), AIC values, Δ AIC values, and model weights (wi) are reported. 

Model K AIC Δ AIC wi 

Poisson distribution 2 47.18 0.00 0.58 

Zero-inflated Poisson distribution 3 49.18 2.00 0.21 

Negative Binomial distribution 3 49.18 2.00 0.21 
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APPENDIX D 

APPENDIX D: CORRELATION FOR CONTINOUS VARIABLES 
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Table D1. Correlation matrix between continuous covariates. Minutes = Minutes since sunrise, 

Day = Day during the sampling period, Temp. = Temperature 

  Minutes Day Wind Temp. 

Minutes 1.000 -0.034 0.125 0.409 

Day - 1.000 0.004 0.221 

Wind - - 1.000 0.046 

Temp. - - - 1.000 
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APPENDIX E 

APPENDIX E: BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR N-

MIXTURE MODELS 
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Complete Bayesian model specification and simulation code in R language for evaluating Dusky 

Grouse survey protocols for point counts analyzed using N-mixture models where local 

abundance and probability of detection were kept constant.  

# Function for simulating and analyzing data using a N-mixture model for point counts in which 

average local abundance and probability of detection are kept constant. 

 

# Code adapted from:  

#Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of 

distribution, abundance, and species richness in R and BUGS. Academic Press, London, United 

Kingdom. 

# Kery, M. and M. Schaub. 2012. Bayesian population analysis using WinBUGS. A hierarchical 

perspective. Elsevier Inc. 

 

# S = number of spatial reps/ number of sites 

# V = number of visits at each site (temporal reps) 

# lambda = average local abundance 

# prob = probability of detection 

# num.sim = number of simulations 

 

#Simulate Data - Nmixture model. Parameters estimated: lambda and probability of detection 

Sim.Nmix.fn <- function(S=S, V=V, lambda = lambda, prob = prob, num.sim = num.sim) { 

  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 

   

  #*************** 

  # Define Bayesian Model  

  #*************** 

   

  # Specify model in Bugs language 

  sink("NMmodel.txt") 

  cat(" 

    model { 

     

    # Priors 

       lambda ~ dgamma(0.005, 0.005)      # Standard vague prior for lambda 

       p ~ dunif(0, 1) #vague prior for probability of detection 

     

    # Likelihood 

       # Biological model for true abundance 

          for (i in 1:S) { 

            N[i] ~ dpois(lambda) #describes spatial variation in abundance (N) 

        # Observation model for replicated counts 

           for (j in 1:V) { 

             y[i,j] ~ dbin(p, N[i]) #count (observation) for each visit at each site 

           } # j 
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         } # i 

         

        #Derived parameters 

        Ntotal <- sum(N[]) #total of abundance at each site (N) 

    } 

    ",fill = TRUE) 

  sink() 

   

  #************************************************** 

  # Loop for replicating datasets and assessing bias 

  #************************************************** 

   

  num.sim <- num.sim 

   

  # Create empty vectors to store results from replicated datasets 

  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 

  sd.bias.Nsite <- vector("list",num.sim) 

  baye.pvalue.Nsite <- vector("list",num.sim)  

   

  m.bias.p <- vector("list",num.sim) #bias in probability of detection 

  sd.bias.p <- vector("list",num.sim) 

  baye.pvalue.p <- vector("list",num.sim) 

   

  m.bias.Ntot <- vector("list",num.sim) #bias in total N 

  sd.bias.Ntot <- vector("list",num.sim) 

  baye.pvalue.Ntot <- vector("list",num.sim) 

   

  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 

  sd.bias.lam <- vector("list",num.sim) 

  baye.pvalue.lam <- vector("list",num.sim) 

   

   

  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at 

site) 

  sd.CV.lam <- vector("list",num.sim) 

  prop.CV.lam <- vector("list", num.sim) 

   

  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 

  sd.CV.Ntot <- vector("list",num.sim) 

  prop.CV.Ntot <- vector("list", num.sim) 

 

  #******************** 

  # Start Simulation 

  #******************** 
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  # Stick simulation in loop and replicate num.sim times 

  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 

     

    #Simulate data 

    S = S  # spatial reps 

    V = V  # temporal reps 

    lambda = lambda # mean abundance at site 

    prob = prob # probablity of detection 

     

    # Create structure to contain counts 

    y <- array(dim = c(S,V)) 

     

    # sample abundance from a Poisson (lambda = 0.3) 

    N <- rpois(n=S, lambda=lambda) 

     

    # sample counts from a Binomial distribution (N, prob = 0.3) 

    for (j in 1:V){ 

      y[,j] <- rbinom(n = S, size = N, prob = prob) 

    } 

     

    # Bundle data 

    win.data <- list(y = y, S = nrow(y), V = ncol(y)) 

     

    # initial values 

    Nst <- apply(y, 1, max) + 1 # This line is vital 

    inits <- function() list(N = Nst) 

     

    # Define parameters to be monitored 

    params <- c("lambda", "p", "Ntotal", "N") 

     

    # MCMC settings 

    ni <- 5000 

    nt <- 1 

    nb <- 1000 

    nc <- 3 

     

    start.time = Sys.time()  #set timer 

    # run model 

    out <- jags(win.data, inits, params, "NMmodel.txt", n.chains = nc, 

                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 

    print(out) 

     

    end.time = Sys.time() 
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    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 

    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 

     

    #************************************** 

    #### Evaluate bias #### 

    #************************************** 

    #Bias in N (site specific abundance) 

    bias.Nsite <- out$mean$N - N #calculates bias 

    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 

    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 

    baye.pvalue.Nsite[k] <-mean(N > out$mean$N)  #Bayesian P-value (proportion of simulations 

where the true abundance was greater than the estimated abundance - values close to 0 or 1 

indicate significant bias) 

     

    #Bias in lambda (average local abundance) - descriptions same as above 

    bias.lam <- out$mean$lambda - lambda 

    m.bias.lam[k] <- mean(bias.lam) 

    sd.bias.lam[k] <- sd(bias.lam) 

    baye.pvalue.lam[k] <- mean(lambda > out$mean$lambda) 

     

    #Bias in p - descriptions same as above 

    bias.p <- out$mean$p - prob 

    m.bias.p[k] <- mean(bias.p) 

    sd.bias.p[k] <- sd(bias.p) 

    baye.pvalue.p[k] <- mean(prob > out$mean$p) 

     

    #Bias in Ntotal (total population size) - descriptions same as above 

    bias.Ntot <- out$mean$Ntotal - sum(N) 

    m.bias.Ntot[k] <- mean(bias.Ntot) 

    sd.bias.Ntot[k] <- sd(bias.Ntot) 

    baye.pvalue.Ntot[k] <- mean(sum(N) > out$mean$Ntotal) 

     

    #Coefficient of Variation in Ntotal (total population size) - want to be under 15% 

    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 

    m.CV.Ntot[k] <- mean(CV.Ntot) 

    sd.CV.Ntot[k] <- sd(CV.Ntot) 

    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) 

     

    #Coefficient of Variation in local abundance (lambda / average local abundance) 

    CV.lam <- out$sd$lambda/out$mean$lambda 

    m.CV.lam[k] <- mean(CV.lam) 

    sd.CV.lam[k] <- sd(CV.lam) 

    prop.CV.lam[k] <- mean(CV.lam < 0.15) 
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  }  ) #This will be the end of the simulations 

     

  #******************** 

  # Summary of Results  

  #******************** 

  results <- c("lambda", "prob", "N.total", "N.site", "N.total.CV", "lambda.CV", "Prob.CV.Ntot", 

"Prob.CV.lambda") 

  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.p))), 

(mean(unlist(m.bias.Ntot))), (mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), 

(mean(unlist(m.CV.lam))), NA, NA),2) 

   

  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.p), 0.05)), 

(quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), 

(quantile(unlist(m.CV.Ntot), 0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 90% 

credible interval 

   

  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.p), 0.95)), 

(quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), 

(quantile(unlist(m.CV.Ntot), 0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 90% 

credible interval 

   

  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 

(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 

   

  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.p))), 

(mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, NA),2)  

   

  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) 

#creates a table of results 

  print(sim.results) 

 

  #**************** 

  #Post processing  

  #**************** 

  # Set plots so that six plots can be created in one image 

  par(mfrow = c(6,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 

   

  # Plots 

  (hist(unlist(m.bias.Nsite), xlim=c(-1,1), breaks=120, main="", ylab="N.site")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 

  (abline(v=0, col="red", lwd=3)) 
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  (hist(unlist(m.bias.p), xlim=c(-0.5,0.5), main="", ylab="Detection prob.")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.Ntot), xlim=c(-100,100), main="", ylab="Total N")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.Ntot), xlim=c(0,0.5), main="", ylab="CV Ntotal")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.lam), xlim=c(0,0.5), main="", ylab="CV lambda")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = 

unlist(m.bias.lam), m.bias.p = unlist(m.bias.p), m.bias.Ntot = unlist(m.bias.Ntot), m.CV.Ntot = 

unlist(m.CV.Ntot), m.CV.lam = unlist(m.CV.lam), lambda = lambda, prob = prob, S = S, V = V, 

num.sim = num.sim)) 

} 
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APPENDIX F 

APPENDIX F: BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR N-

MIXTURE MODELS WHERE POINT COUNT VISITS WERE CORRELATED 
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Complete Bayesian model specification and simulation code in R language for evaluating Dusky 

Grouse survey protocols for point counts analyzed using N-mixture models where local 

abundance and probability of detection were kept constant, and point counts visits were 

correlated. 

# Functions for simulating data for four visits per site that are correlated where visits 1 & 2 have 

a correlation of 0.67, 1 & 3 have a correlation of 0.41, 1 & 4 have a correlation of 0.44, 2 & 3 

have a correlation of 0.48, 2 & 4 have a correlation of 0.47, and 3 & 4 have a correlation of 0.67. 

Correlations are based off point counts from 2020 and 2021 data where all counts occurred on 

the same day and visits 1 & 2, and visits 3 & 4 were back-to-back. There are two functions: 

rcorrbinom which simulates the correlated counts and Sim.Nmix.fn which uses rcorrbinom to 

simulate correlated data and then analyzes the data using an N-mixture model. Average local 

abundance (lambda) across and probability of detection are kept constant.  

 

# rcorrbinom code adapted from:  

#https://stats.stackexchange.com/questions/284996/generating-correlated-binomial-random-

variables 

 

# Sim.Nmix.fn code adapted from: 

#Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of 

distribution, abundance, and species richness in R and BUGS. Academic Press, London, United 

Kingdom. 

# Kery, M. and M. Schaub. 2012. Bayesian population analysis using WinBUGS. A hierarchical 

perspective. Elsevier Inc. 

 

# S = number of spatial reps/ number of sites 

# V = number of visits at each site (temporal reps) 

# lambda = average local abundance 

# prob = probability of detection 

# num.sim = number of simulations 

 

# n = number of observations 

# size = number of trials 

# prob = probability of detection 

# corr1 = correlation between visit 1 & visit 2: 0.67 

# corr2 = correlation between visit 2 & visit 3: 0.47 

# corr3 = correlation between visit 3 & visit 4: 0.67 

 

# Creates data where visit 1 is correlated with visit 2, visit 2 is correlated with visit 3, and visit 3 

is correlated with visit 4 

# Creates correlated Bernoulli random variables, which frequently resulted in correlation 

between the binomial values 

rcorrbinom <- function(n, size = size, prob, corr1 = corr1, corr2 = corr2, corr3 = corr3) { 

  #Check inputs 

  if (!is.numeric(n))             { stop('Error: n must be numeric') } 
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  if (length(n) != 1)             { stop('Error: n must be a single number') } 

  if (as.integer(n) != n)         { stop('Error: n must be a positive integer') } 

  if (n < 1)                      { stop('Error: n must be a positive integer') } 

  if (!is.numeric(size))          { stop('Error: n must be numeric') } 

  if (length(size) != 1)          { stop('Error: n must be a single number') } 

  if (as.integer(size) != size)   { stop('Error: n must be a positive integer') } 

  if (size < 1)                   { stop('Error: n must be a positive integer') } 

  if (!is.numeric(prob))         { stop('Error: prob1 must be numeric') } 

  if (length(prob) != 1)         { stop('Error: prob1 must be a single number') } 

  if (prob < 0)                  { stop('Error: prob1 must be between 0 and 1') } 

  if (prob > 1)                  { stop('Error: prob1 must be between 0 and 1') } 

  if (!is.numeric(corr1))          { stop('Error: corr must be numeric') } 

  if (length(corr1) != 1)          { stop('Error: corr must be a single number') } 

  if (corr1 < -1)                  { stop('Error: corr must be between -1 and 1') } 

  if (corr1 > 1)                   { stop('Error: corr must be between -1 and 1') } 

  if (!is.numeric(corr2))          { stop('Error: corr must be numeric') } 

  if (length(corr2) != 1)          { stop('Error: corr must be a single number') } 

  if (corr2 < -1)                  { stop('Error: corr must be between -1 and 1') } 

  if (corr2 > 1)                   { stop('Error: corr must be between -1 and 1') } 

  if (!is.numeric(corr3))          { stop('Error: corr must be numeric') } 

  if (length(corr3) != 1)          { stop('Error: corr must be a single number') } 

  if (corr3 < -1)                  { stop('Error: corr must be between -1 and 1') } 

  if (corr3 > 1)                   { stop('Error: corr must be between -1 and 1') } 

   

    #Compute probabilities 

  #Between visit 1 & visit 2 

  P00.1   <- (1-prob)*(1-prob) + corr1*sqrt(prob*prob*(1-prob)*(1-prob)) 

  P01.1   <- 1 - prob - P00.1 

  P10.1   <- 1 - prob - P00.1 

  P11.1   <- P00.1 + prob + prob - 1 

  PROBS.1 <- c(P00.1, P01.1, P10.1, P11.1) 

  if (min(PROBS.1) < 0)       { stop('Error: corr is not in the allowable range') } 

   

  #Between visit 2 & visit 3 

  P00.2   <- (1-prob)*(1-prob) + corr2*sqrt(prob*prob*(1-prob)*(1-prob)) 

  P01.2   <- 1 - prob - P00.2 

  P10.2   <- 1 - prob - P00.2 

  P11.2   <- P00.2 + prob + prob - 1 

  PROBS.2a <- c(P00.2, P01.2) # First one is zero 

  PROBS.2b <- c(P10.2, P11.2) # First one is not zero 

  if (min(PROBS.2a) < 0)       { stop('Error: corr is not in the allowable range')} 

  if (min(PROBS.2b) < 0)       { stop('Error: corr is not in the allowable range')} 

   

  #Between visit 3 & visit 4 



175 

 

 

  P00.3   <- (1-prob)*(1-prob) + corr3*sqrt(prob*prob*(1-prob)*(1-prob)) 

  P01.3   <- 1 - prob - P00.3 

  P10.3   <- 1 - prob - P00.3 

  P11.3   <- P00.3 + prob + prob - 1 

  PROBS.3a <- c(P00.3, P01.3) # First one is zero 

  PROBS.3b <- c(P10.3, P11.3) # First one is not zero 

  if (min(PROBS.3a) < 0)       { stop('Error: corr is not in the allowable range')} 

  if (min(PROBS.3b) < 0)       { stop('Error: corr is not in the allowable range')} 

   

  #Generate the output 

  # Generates counts for visits 1 & 2 

  # sample.int = n (number of items to choose from), size (number of items to choose), replace 

(sample with replacement), prob (vector of probability weights for obtaining the elements of the 

vector beign sampled) 

  RAND.1 <- array(sample.int(4, size = n*size, replace = TRUE, prob = PROBS.1), 

                  dim = c(n, size)) #produces count group, 1 = 00, 2 = 01, 3 = 10 4 = 11 

  VALS.1 <- array(0, dim = c(2, n, size)) # will hold results of each trial so could have multiple 

arrays if size > 1 

  OUT.1  <- array(0, dim = c(2, n)) # will hold counts 

   

  for (i in 1:n)    {  

    for (j in 1:size) {  

      VALS.1[1,i,j] <- (RAND.1[i,j] %in% c(3, 4)) #is Rand.1 in count groups 3 or 4 (counts 10 or 

11) 

      VALS.1[2,i,j] <- (RAND.1[i,j] %in% c(2, 4)) }  # is Rand.1 in count groups 2 or 4 (counts 

01 or 11) 

    OUT.1[1, i]   <- sum(VALS.1[1,i,]) #sums number of detections in first visit -> count for visit 

1 

    OUT.1[2, i]   <- sum(VALS.1[2,i,]) #sums number of detections in second visit -> count for 

visit 2 

    } 

   

  # Section generates counts for visits 2 & 3, where visit 2 counts are identical to the previous 

visit 2 counts 

  RAND.2 <- array(0, dim = c(n, n*size)) #creates array filled with zeros 

  for (i in 1:n) { 

    for (j in 1:size) { 

      if (VALS.1[2,i,j] > 0) { #if for visit 2, count is greater than 0 

        RAND.2[i,j] <- sample.int(2, size = 1, replace = TRUE, prob = PROBS.2b) #place in count 

group 

        if (RAND.2[i,j] == 1) { 

          RAND.2[i,j] <- 3 #if in group 1, gets placed in overall group 3 (1,0) 

        } 

        else { 
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          RAND.2[i,j] <- 4 #otherwise placed in overall group 4 (1,1) 

        } 

      } 

      else { 

        RAND.2[i,j] <- sample.int(2, size = 1, replace = TRUE, prob = PROBS.2a) #place in count 

group 1(0,0) or 2(0,1) 

         

      } 

    } 

  } 

   

  VALS.2 <- array(0, dim = c(2, n, size)) #will hold results of each trial  

  OUT.2  <- array(0, dim = c(2, n)) #will hold counts 

   

  for (i in 1:n)    {  

    for (j in 1:size) {  

      VALS.2[1,i,j] <- (RAND.2[i,j] %in% c(3, 4)) #is Rand.2 in probability groups 3 or 4 (counts 

10 or 11) 

      VALS.2[2,i,j] <- (RAND.2[i,j] %in% c(2, 4)) } # is Rand.2 in probability groups 2 or 4 

(counts 01 or 11) 

    OUT.2[1, i]   <- sum(VALS.2[1,i,]) #sums number of detections in second visit 

    OUT.2[2, i]   <- sum(VALS.2[2,i,]) #sums number of detections in third visit 

  } 

   

  # Section generates counts for visits 3 & 4, where visit 3 counts are identical to the previous 

visit 3 counts 

  RAND.3 <- array(0, dim = c(n, n*size)) #creates array filled with zeros 

  for (i in 1:n) { 

    for (j in 1:size) { 

      if (VALS.2[2,i,j] > 0) { #if for visit 3, count is greater than 0 

        RAND.3[i,j] <- sample.int(2, size = 1, replace = TRUE, prob = PROBS.3b) #place in count 

group 

        if (RAND.3[i,j] == 1) { 

          RAND.3[i,j] <- 3 #if in group 1, gets placed in overall group 3 (1,0) 

        } 

        else { 

          RAND.3[i,j] <- 4 #otherwise placed in overall group 4 (1,1) 

        } 

      } 

      else { 

        RAND.3[i,j] <- sample.int(2, size = 1, replace = TRUE, prob = PROBS.3a) #place in count 

group 1(0,0) or 2(0,1) 

         

      } 
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    } 

  } 

   

  VALS.3 <- array(0, dim = c(2, n, size)) #will hold results of each trial  

  OUT.3  <- array(0, dim = c(2, n)) #will hold counts 

   

  for (i in 1:n)    {  

    for (j in 1:size) {  

      VALS.3[1,i,j] <- (RAND.3[i,j] %in% c(3, 4)) #is Rand.3 in probability groups 3 or 4 (counts 

10 or 11) 

      VALS.3[2,i,j] <- (RAND.3[i,j] %in% c(2, 4)) } # is Rand.3 in probability groups 2 or 4 

(counts 01 or 11) 

    OUT.3[1, i]   <- sum(VALS.3[1,i,]) #sums number of detections in third visit 

    OUT.3[2, i]   <- sum(VALS.3[2,i,]) #sums number of detections in fourth visit 

  } 

   

  # Give output- counts per visit per site 

  y <- array(dim = c(n,4)) 

  y[,1] <- OUT.1[1,] 

  y[,2] <- OUT.1[2,] 

  y[,3] <- OUT.2[2,] 

  y[,4] <- OUT.3[2,] 

  y 

} 

 

# S = number of sites 

# V = number of visits 

# lambda = mean local abundance 

# prob = probability of detection 

# num.sim = number of simulations 

# The code doesn't work perfectly for outputting correlated counts, so the corr values are the 

input to get the correlation we want which is the rho values 

 

#Simulate Data - Nmixture model. Parameters estimated: lambda and probability of detection 

# corr1 & corr3 = 0.30, corr2 = -0.20 

Sim.Nmix.fn <- function(S=S, V=V, lambda = lambda, prob = prob, num.sim = num.sim, corr1 

= corr1, corr2 = corr2, corr3 = corr3, rho1 = rho1, rho2 = rho2, rho3 = rho3) { 

  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 

   

  #*************** 

  # Define Bayesian Model  

  #*************** 

   

  # Specify model in Bugs language 
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  sink("modelCC.txt") 

  cat(" 

    model { 

     

    # Priors 

       lambda ~ dgamma(0.005, 0.005)      # Standard vague prior for lambda 

       p ~ dunif(0, 1) #vague prior for probability of detection 

     

    # Likelihood 

       # Biological model for true abundance 

          for (i in 1:S) { 

            N[i] ~ dpois(lambda) #describes spatial variation in abundance (N) 

        # Observation model for replicated counts 

           for (j in 1:V) { 

             y[i,j] ~ dbin(p, N[i]) #count (observation) for each visit at each site 

           } # j 

         } # i 

         

        #Derived parameters 

        Ntotal <- sum(N[]) #total of abundance at each site (N) 

    } 

    ",fill = TRUE) 

  sink() 

   

  #************************************************** 

  # Loop for replicating datasets and assessing bias 

  #************************************************** 

   

  num.sim <- num.sim 

   

  # Create empty vectors to store results from replicated datasets 

  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 

  sd.bias.Nsite <- vector("list",num.sim) 

  baye.pvalue.Nsite <- vector("list",num.sim)  

   

  m.bias.p <- vector("list",num.sim) #bias in probability of detection 

  sd.bias.p <- vector("list",num.sim) 

  baye.pvalue.p <- vector("list",num.sim) 

   

  m.bias.Ntot <- vector("list",num.sim) #bias in total N 

  sd.bias.Ntot <- vector("list",num.sim) 

  baye.pvalue.Ntot <- vector("list",num.sim) 

   

  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 
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  sd.bias.lam <- vector("list",num.sim) 

  baye.pvalue.lam <- vector("list",num.sim) 

   

    m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at 

site) 

  sd.CV.lam <- vector("list",num.sim) 

  prop.CV.lam <- vector("list", num.sim) 

   

  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 

  sd.CV.Ntot <- vector("list",num.sim) 

  prop.CV.Ntot <- vector("list", num.sim) 

 

  #******************** 

  # Start Simulation 

  #******************** 

   

  # Stick simulation in loop and replicate num.sim times 

 

    system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 

     

    #Simulate data 

    S = S  # spatial reps 

    V = V  # temporal reps 

    lambda = lambda # mean abundance at site 

    prob = prob # probablity of detection 

    rho1 = rho1 # desired correlation 

    rho2 = rho2 

    rho3 = rho3 

    corr1 = corr1 # modified correlation 

    corr2 = corr2 

    corr3 = corr3 

     

    # Create structure to contain counts 

    y <- array(dim = c(S,V)) 

     

    for(f in 1:1000){ #if correlated counts fail to be created, then it tries again (prevents simulation 

from crashing) 

      N <- rpois(n=S, lambda=lambda) # sample abundance from a Poisson distribution 

    # sample counts from a Binomial distribution  

    for(m in 1:200000) { #tries for creating count from simulated abundance (N) 

       

      my <- array(NA,dim = c(S,4)) #creates empty array for counts 

      for (i in 1:S){ 

        NN <- N[i] 
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        if (NN > 0){ #if actual abundance is > 0, sample using the rcorrbinom function to create 

counts 

          ymy <- rcorrbinom(n = 1, size = NN, prob = prob, corr1 = 0.30, corr2 = -0.20, corr3 = 

0.30) 

          my[i,] <- ymy 

        } 

        else { # if actual abundance is 0, then the counts are automatically 0 

          my[i,] <- 0 

        } 

      } 

       

      data.y.cor <- cor(my) # get correlation of count data and make sure that it is within 0.05 of 

the desired correlation 

      cor1 <- (data.y.cor[1,2] >= (rho1 - 0.05) & data.y.cor[1,2] <= (rho1 + 0.05))  

      cor2 <- (data.y.cor[2,3] >= (rho2 - 0.05) & data.y.cor[2,3] <= (rho2 + 0.05)) 

      cor3 <- (data.y.cor[3,4] >= (rho3 - 0.05) & data.y.cor[3,4] <= (rho3 + 0.05)) 

      cor13 <- (data.y.cor[1,3] >= (0.41 - 0.05) & data.y.cor[1,3] <= (0.41 + 0.05)) 

      cor14 <- (data.y.cor[1,4] >= (0.44 - 0.05) & data.y.cor[1,4] <= (0.44 + 0.05)) 

      cor24 <- (data.y.cor[2,4] >= (0.47 - 0.05) & data.y.cor[2,4] <= (0.47 + 0.05)) 

       

      if (cor1 %in% NA){ 

        cor1 <- FALSE 

      } 

      if (cor2 %in% NA){ 

        cor2 <- FALSE 

      } 

      if (cor3 %in% NA){ 

        cor3 <- FALSE 

      } 

      if (cor13 %in% NA){ 

        cor13 <- FALSE 

      } 

      if (cor14 %in% NA){ 

        cor14 <- FALSE 

      } 

      if (cor24 %in% NA){ 

        cor24 <- FALSE 

      } 

       

      # if count data has the correct correlation then export the count data and break the for loop 

      if (cor1 == TRUE & cor2 == TRUE & cor3==TRUE & cor13==TRUE & cor14==TRUE & 

cor24==TRUE){ 

        y <- my 

        cat("iteration ", m) #print how many iterations it took get count data 
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        break 

      } 

    } 

      cat(" attempt", f ) #print how many times N had to be generated to get count data with correct 

correlation (created to keep simulation from stopping/crashing) 

      if (is.na(mean(y)) == FALSE){ 

        break #exit for loop with count data 

      } 

    } 

 

    # Bundle data 

    win.data <- list(y = y, S = nrow(y), V = ncol(y)) 

     

    # initial values 

    Nst <- apply(y, 1, max) + 1 # This line is vital 

    inits <- function() list(N = Nst) 

     

    # Define parameters to be monitored 

    params <- c("lambda", "p", "Ntotal", "N") 

     

    # MCMC settings 

    ni <- 30000 

    nt <- 1 

    nb <- 100 

    nc <- 3 

     

    start.time = Sys.time()  #set timer 

    # run model 

    out <- jags(win.data, inits, params, "modelCC.txt", n.chains = nc, 

                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 

    print(out) 

     

    end.time = Sys.time() 

    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 

    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 

     

    #************************************** 

    #### Evaluate bias #### 

    #************************************** 

    ##Bias in N (site specific abundance) 

    bias.Nsite <- out$mean$N - N #calculates bias 

    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 

    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 
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    baye.pvalue.Nsite[k] <-mean(N > out$mean$N)  #Bayesian P-value (proportion of simulations 

where the true abundance was greater than the estimated abundance - values close to 0 or 1 

indicate significant bias) 

     

    ##Bias in lambda (average local abundance) - descriptions same as above 

    bias.lam <- out$mean$lambda - lambda 

    m.bias.lam[k] <- mean(bias.lam) 

    sd.bias.lam[k] <- sd(bias.lam) 

    baye.pvalue.lam[k] <- mean(lambda > out$mean$lambda) 

     

    ##Bias in p - descriptions same as above 

    bias.p <- out$mean$p - prob 

    m.bias.p[k] <- mean(bias.p) 

    sd.bias.p[k] <- sd(bias.p) 

    baye.pvalue.p[k] <- mean(prob > out$mean$p) 

     

    ##Bias in Ntotal (total population size) - descriptions same as above 

    bias.Ntot <- out$mean$Ntotal - sum(N) 

    m.bias.Ntot[k] <- mean(bias.Ntot) 

    sd.bias.Ntot[k] <- sd(bias.Ntot) 

    baye.pvalue.Ntot[k] <- mean(sum(N) > out$mean$Ntotal) 

     

    ##Coefficient of Variation in Ntotal (total population size) - want to be under 15% 

    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 

    m.CV.Ntot[k] <- mean(CV.Ntot) 

    sd.CV.Ntot[k] <- sd(CV.Ntot) 

    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) 

     

    #Coefficient of Variation in local abundance (lambda / average local abundance) 

    CV.lam <- out$sd$lambda/out$mean$lambda 

    m.CV.lam[k] <- mean(CV.lam) 

    sd.CV.lam[k] <- sd(CV.lam) 

    prop.CV.lam[k] <- mean(CV.lam < 0.15) 

     

    }  ) #This will be the end of the simulations 

     

  #******************** 

  # Summary of Results  

  #******************** 

  results <- c("lambda", "prob", "N.total", "N.site", "N.total.CV", "lambda.CV", "Prob.CV.Ntot", 

"Prob.CV.lambda") 

  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.p))), 

(mean(unlist(m.bias.Ntot))), (mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), 

(mean(unlist(m.CV.lam))), NA, NA),2) 
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  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.p), 0.05)), 

(quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), 

(quantile(unlist(m.CV.Ntot), 0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 90% 

credible interval 

   

  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.p), 0.95)), 

(quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), 

(quantile(unlist(m.CV.Ntot), 0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 90% 

credible interval 

   

  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 

(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 

   

  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.p))), 

(mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, NA),2) 

   

  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) 

#creates a table of results 

  print(sim.results) 

 

  #**************** 

  #Post processing  

  #**************** 

  # Set plots so that six plots can be created in one image 

  par(mfrow = c(6,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 

   

  # Plots 

  (hist(unlist(m.bias.Nsite), xlim=c(-5,5), breaks=120, main="", ylab="N.site")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.p), xlim=c(-0.5,0.5), main="", ylab="Detection prob.")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.Ntot), xlim=c(-100,100), main="", ylab="Total N")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.Ntot), xlim=c(0,0.5), main="", ylab="CV Ntotal")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.lam), xlim=c(0,0.5), main="", ylab="CV lambda")) 
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  (abline(v=0.15, col="red", lwd=3)) 

   

  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = 

unlist(m.bias.lam), m.bias.p = unlist(m.bias.p), m.bias.Ntot = unlist(m.bias.Ntot), m.CV.Ntot = 

unlist(m.CV.Ntot), m.CV.lam = unlist(m.CV.lam), lambda = lambda, prob = prob, S = S, V = V, 

num.sim = num.sim)) 

} 
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APPENDIX G 

APPENDIX G: BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR 

POINT-COUNTS EVALUATED USING HIERARCHICAL DISTANCE SAMPLING 
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Complete Bayesian model specification and simulation code in R language for evaluating Dusky 

Grouse survey protocols for point counts analyzed using hierarchical distance sampling where 

local abundance and probability of detection (sigma) were kept constant. 

# Function for simulating and analyzing data using a hierarchical distance sampling model for 

point counts where both abundance and detection is kept constant.  

# Data is simulated over a square using average local abundance for the square (lambda) and 

then truncated into a circle with radius B with an average local abundance equal to the estimated 

average local abundance of a point count site from the 2020 & 2021 data 

 

# Code adapted from: Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: 

analysis of distribution, abundance, and species richness in R and BUGS. Academic Press, 

London, United Kingdom 

 

# nsites = number of sites 

# lambda = average local abundance per site over a square with area 2B x 2B where B = radius 

of circle 

# lambda1 = average local abundance per point count site (so average local abundance within a 

circle with a radius of B) 

# sigma = sigma for the half-normal detection function 

# num.sim = number of simulations 

 

# SET WORKING DIRECTORY 

Sim.HDS.point.fn <- function(nsites = nsites, lambda = lambda, sigma = sigma, num.sim = 

num.sim, lambda1 = lambda1) { 

  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 

   

  #*************** 

  # Define Bayesian Model  

  #*************** 

   

  # Specify model in Bugs language, but going to use JagsUI/jags 

  sink("simHDSpointfunction.txt") 

  cat(" 

 model{ 

  # Priors 

  sigma ~ dunif(0,100) #vague prior for sigma 

  lambda ~ dgamma(0.001, 0.001) #standard vague prior for lambda 

  for(i in 1:nind){ 

    dclass[i] ~ dcat(fc[site[i],]) # Part 1 of HM - model for distance class of the observed 

individuals 

  } 

  for(s in 1:nsites){ 

    # Construct cell probabilities for nD distance bands 

    for(g in 1:nD){                # midpt = mid-point of each band 
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      log(p[s,g]) <- -midpt[g] * midpt[g] / (2 * sigma * sigma) # half-normal detection function 

      pi[s,g] <- ((2 * midpt[g] ) / (B * B)) * delta # prob. per interval 

      f[s,g] <- p[s,g] * pi[s,g] 

      fc[s,g] <- f[s,g] / pcap[s] 

    } 

    pcap[s] <- sum(f[s,])           # Pr(capture): sum of rectangular areas 

    ncap[s] ~ dbin(pcap[s], N[s])   # Part 2 of HM - describes imperfect detection leading to count 

n[s] 

    N[s] ~ dpois(lambda)         # Part 3 of HM - describes spatial variation in local abundance N[s] 

  } 

  # Derived parameters 

  Ntotal <- sum(N[]) #total of abundance at each site (N) 

  area <- nsites*3.141*B*B/1000000 #area in meters of the point count area 

  D <- Ntotal/area #calculates density 

} 

    ",fill = TRUE) 

  sink() 

   

  #************************************************** 

  # Loop for replicating datasets and assessing bias 

  #************************************************** 

   

  num.sim <- num.sim 

   

  # Create empty vectors to store results from replicated datasets 

  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 

  sd.bias.Nsite <- vector("list",num.sim) 

  baye.pvalue.Nsite <- vector("list",num.sim)  

  m.Ntrue <- vector("list",num.sim)  

  m.N <- vector("list",num.sim)  

   

  m.bias.sigma <- vector("list",num.sim) #bias in sigma 

  sd.bias.sigma <- vector("list",num.sim) 

  baye.pvalue.sigma <- vector("list",num.sim) 

  m.sig <- vector("list", num.sim) 

   

  m.bias.Ntot <- vector("list",num.sim) #bias in total N 

  sd.bias.Ntot <- vector("list",num.sim) 

  baye.pvalue.Ntot <- vector("list",num.sim) 

  m.bias.Ntot <- vector("list", num.sim) 

  m.Ntot.true <- vector("list", num.sim) 

  m.Ntot <- vector("list", num.sim) 
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  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at point 

count site) 

  sd.bias.lam <- vector("list",num.sim) 

  baye.pvalue.lam <- vector("list",num.sim) 

  m.lambda <- vector("list", num.sim) 

   

  m.bias.den <- vector("list", num.sim) # bias in density 

  sd.bias.den <- vector("list", num.sim) 

  baye.pvalue.den <- vector("list", num.sim) 

  m.density <- vector("list", num.sim) 

  m.density.true <- vector("list", num.sim) 

   

  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at 

site) 

  sd.CV.lam <- vector("list",num.sim) 

  prop.CV.lam <- vector("list", num.sim) 

   

  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 

  sd.CV.Ntot <- vector("list",num.sim) 

  prop.CV.Ntot <- vector("list", num.sim) 

   

  #******************** 

  # Start Simulation 

  #******************** 

   

  # Stick simulation in loop and replicate num.sim times 

  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 

     

    # ************** 

    # Simulate Data 

    # ************** 

    # Simulate abundance model (Poisson GLM for N) 

    N <- rpois(nsites, lambda)     # site specific abundance for square 

    N.true <- N                    # for point, those individuals located inside circle (radius = B) 

    B <- 100 #radius for circle (meters) 

    area <- nsites*3.141*B*B/1000000 #area for circle (meters squared) 

    den.true <- sum(N.true)/area #density for point count circle 

     

    # Simulate observation model - set up empty dataframe 

    data <- NULL 

     

    for(i in 1:nsites){ 

      if(N[i]==0){ #if abundance at a site is 0 

        data <- rbind(data, c(i,NA,NA,NA,NA)) # save site, y=1, u, v, d 
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        next 

      } 

       

      # Simulation data on a square 

      u <- runif(N[i], 0, 2*B)   #x coordinate for distance from middle of square/circle 

      v <- runif(N[i], 0, 2*B)   #y coordinate for distance from middle of square/circle 

      d <- sqrt((u-B)^2 + (v-B)^2)  #distance 

      N.true[i] <- sum(d<= B)    # Population size inside of count circle 

       

      # Can only count individuals in the circle, so set to zero probability of individuals in the 

corners 

      p <- exp(-d *d / (2 * (sigma^2)))  # Detection probability - half normal detection function 

      pp <- ifelse(d <= B, 1, 0) * p    # Inside or outside circle (times "inside" or "outside") 

      y <- rbinom(N[i], 1, pp)  # Detection/non-detection of each individual 

       

      # Subset to "captured" individuals only 

      u <- u[y==1] 

      v <- v[y==1] 

      d <- d[y==1] 

      y <- y[y==1] 

       

      # Compile things into a matrix and insert NA if no individuals were captured at site i. 

Coordinates (u,v) are not used here. 

      if(sum(y) > 0) 

        data <- rbind(data, cbind(rep(i, sum(y)), y, u, v, d)) 

      else 

        data <- rbind(data, c(i,NA,NA,NA,NA)) # make a row of missing data 

    } 

    colnames(data) <- c("site", "y", "u", "v", "d") # name 1st column "site" 

     

    # ************************* 

    # Prep Data for analysis 

    # ************************* 

    ncap <- table(data[,1])            # ncap = 1 if no individuals captured 

    sites0 <- data[is.na(data[,2]),][,1] # sites where nothing was seen 

    ncap[as.character(sites0)] <- 0    # Fill in 0 for sites with no detections 

    ncap <- as.vector(ncap)            # Number of individuals detected per site 

    site <- data[!is.na(data[,2]),1]   # Site ID of each observation 

    delta <- 25                       # Distance bin width for rectangular approximation 

    midpt <- seq(delta/2, B, delta)    # Make mid-points and chop up data 

    dclass <- data[,5] %/% delta + 1   # Convert distance to distance category 

    nD <- length(midpt)                # Number of distance intervals 

    dclass <- dclass[!is.na(data[,2])] # Observed categorical observations 

    nind <- length(dclass)             # Total number of individuals detected 
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    # Bundle data 

    win.data <- list(nsites=nsites, nind=nind, B=B, nD=nD, midpt=midpt, delta=delta, ncap=ncap, 

dclass=dclass, site=site) 

     

    # initial values 

    Nst <- ncap + 1 # This line is vital 

    inits <- function() list(N = Nst, sigma = runif(1,30,60)) 

     

    # Define parameters to be monitored 

    params <- c("lambda", "sigma", "Ntotal", "D", "N") 

     

    # MCMC settings 

    ni <- 5000 

    nt <- 1 

    nb <- 1000 

    nc <- 3 

     

    start.time = Sys.time()  #set timer 

    # run model 

    out <- jags(win.data, inits, params, "simHDSpointfunction.txt", n.chains = nc, 

                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 

    print(out) 

     

    end.time = Sys.time() 

    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 

    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 

     

    #************************************** 

    #### Evaluate bias #### 

    #************************************** 

    #Bias in N (site specific abundance) 

    bias.Nsite <- out$mean$N - N.true #calculates bias 

    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 

    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 

    baye.pvalue.Nsite[k] <-mean(N.true > out$mean$N)  #Bayesian P-value (proportion of 

simulations where the true abundance was greater than the estimated abundance - values close to 

0 or 1 indicate significant bias) 

     

    #Bias in lambda (average local abundance) - descriptions same as above 

    bias.lam <- out$mean$lambda - lambda1 #calculates bias (estimated lambda for circle - true 

lambda per circle(lambda1)) 

    m.bias.lam[k] <- mean(bias.lam) 

    sd.bias.lam[k] <- sd(bias.lam) 
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    baye.pvalue.lam[k] <- mean(lambda1 > out$mean$lambda) 

    m.lambda[k] <- out$mean$lambda 

     

    #Bias in sigma - descriptions same as above 

    bias.sigma <- out$mean$sigma - sigma 

    m.bias.sigma[k] <- mean(bias.sigma) 

    sd.bias.sigma[k] <- sd(bias.sigma) 

    baye.pvalue.sigma[k] <- mean(sigma > out$mean$sigma) 

    m.sig[k] <- out$mean$sigma 

     

    #Bias in Ntotal (total population size)  - descriptions same as above 

    bias.Ntot <- out$mean$Ntotal - sum(N.true) 

    m.bias.Ntot[k] <- mean(bias.Ntot) 

    sd.bias.Ntot[k] <- sd(bias.Ntot) 

    baye.pvalue.Ntot[k] <- mean(sum(N.true) > out$mean$Ntotal) 

    m.Ntot.true[k] <- sum(N.true) 

    m.Ntot[k] <- out$mean$Ntotal 

     

    # Bias in density - descriptions same as above 

    bias.den <- out$mean$D - den.true 

    m.bias.den[k] <- mean(bias.den) 

    sd.bias.den[k] <- sd(bias.den) 

    baye.pvalue.den[k] <- mean(den.true > out$mean$D) 

    m.density.true[k] <- mean(den.true) 

    m.density[k] <- out$mean$D 

     

    #Coefficient of Variation in Ntotal (total population size) - want to be under 15% 

    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 

    m.CV.Ntot[k] <- mean(CV.Ntot) 

    sd.CV.Ntot[k] <- sd(CV.Ntot) 

    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) #percent with CV < 0.15 

     

    #Coefficient of Variation in local abundance (lambda / average local abundance) 

    CV.lam <- out$sd$lambda/out$mean$lambda 

    m.CV.lam[k] <- mean(CV.lam) 

    sd.CV.lam[k] <- sd(CV.lam) 

    prop.CV.lam[k] <- mean(CV.lam < 0.15) 

     

  }  ) #This will be the end of the simulations 

   

  #******************** 

  # Summary of Results  

  #******************** 
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  results <- c("lambda", "sigma", "N.total", "N.site", "N.total.CV", "lambda.CV", 

"Prob.CV.Ntot", "Prob.CV.lambda") 

  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.sigma))), 

(mean(unlist(m.bias.Ntot))), (mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), 

(mean(unlist(m.CV.lam))), NA, NA),2) 

   

  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.sigma), 0.05)), 

(quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), 

(quantile(unlist(m.CV.Ntot), 0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 90% 

credible interval 

   

  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.sigma), 0.95)), 

(quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), 

(quantile(unlist(m.CV.Ntot), 0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 90% 

credible interval 

   

  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 

(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 

   

  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.sigma))), 

(mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, NA),2) 

   

  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) 

#creates a table of results 

  print(sim.results) 

   

  #**************** 

  #Post processing  

  #**************** 

  # Set plots so that six plots can be created in one image 

  par(mfrow = c(6,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 

   

  # Plots 

  (hist(unlist(m.bias.Nsite), xlim=c(-1,1), main="", ylab="N.site")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.sigma), xlim=c(-10,10), main="", ylab="Sigma")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.Ntot), xlim=c(-200,200), main="", ylab="Total N")) 

  (abline(v=0, col="red", lwd=3)) 
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  (hist(unlist(m.CV.Ntot), xlim=c(0,1), main="", ylab="CV Ntotal")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.lam), xlim=c(0,1), main="", ylab="CV lambda")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = 

unlist(m.bias.lam), m.bias.sigma = unlist(m.bias.sigma), m.bias.Ntot = unlist(m.bias.Ntot), 

m.CV.Ntot = unlist(m.CV.Ntot), m.CV.lam = unlist(m.CV.lam), lambda = lambda, sigma = 

sigma, nsites = nsites, num.sim = num.sim, density.true = unlist(m.density.true), m.density = 

unlist(m.density), Ntot.true = unlist(m.Ntot.true), m.Ntot = unlist(m.Ntot), m.sigma = 

unlist(m.sig), m.lambda = unlist(m.lambda), out = out)) 

} 
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APPENDIX H 

APPENDIX H: BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR 

LINE TRANSECTS EVALUATED USING HIERARCHICAL DISTANCE SAMPLING 
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Complete Bayesian model specification and simulation code in R language for evaluating Dusky 

Grouse survey protocols for line transects analyzed using hierarchical distance sampling where 

local abundance and probability of detection (sigma) were kept constant.  

# Function for simulating and analyzing data using a hierarchical distance sampling model for 

line transects where both abundance and sigma (detection) are kept constant. 

 

# Code adapted from: Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: 

analysis of distribution, abundance, and species richness in R and BUGS. Academic Press, 

London, United Kingdom 

 

# nsites = number of sites 

# lambda = average local abundance per transect 

# sigma = sigma for the half-normal detection function 

# num.sim = number of simulations 

# L = transect length 

 

Sim.HDS.line.fn <- function(nsites = nsites, lambda = lambda, sigma = sigma, num.sim = 

num.sim, L = L) { 

  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 

   

  #*************** 

  # Define Bayesian Model  

  #*************** 

   

  # Specify model in Bugs language, but going to use JagsUI/jags 

  sink("simHDSlinefunction.txt") 

  cat(" 

 model{ 

  # Priors 

  sigma ~ dunif(0,100) #vague prior for sigma 

  lambda ~ dgamma(0.001, 0.001) # vague prior for lambda 

  for(i in 1:nind){ 

   dclass[i] ~ dcat(fc[site[i],]) # Part 1 of HM - model for distance class of the observed 

individuals 

} 

  for(s in 1:nsites){ 

    # Construct cell probabilities for nD distance bands 

    for(g in 1:nD){                # midpt = mid-point of each band 

      log(p[s,g]) <- -midpt[g] * midpt[g] / (2 * sigma * sigma) # half-normal detection function 

      pi[s,g] <- delta/B # prob. per interval 

      f[s,g] <- p[s,g] * pi[s,g] 

      fc[s,g] <- f[s,g] / pcap[s] 

    } 

    pcap[s] <- sum(f[s,])           # Pr(capture): sum of rectangular areas 
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    ncap[s] ~ dbin(pcap[s], N[s])   # Part 2 of HM - describes imperfect detection leading to count 

n[s] 

    N[s] ~ dpois(lambda)         # Part 3 of HM - describes spatial variation in local abundance N[s] 

  } 

  # Derived parameters 

  Ntotal <- sum(N[]) #total of abundance at each site (N) 

  area <- nsites*L*2*B/1000000 #area of transects 

  D <- Ntotal/area #density 

} 

    ",fill = TRUE) 

  sink() 

   

   

  #************************************************** 

  # Loop for replicating datasets and assessing bias 

  #************************************************** 

   

  num.sim <- num.sim 

   

  # Create empty vectors to store results from replicated datasets 

  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 

  sd.bias.Nsite <- vector("list",num.sim) 

  baye.pvalue.Nsite <- vector("list",num.sim)  

  m.Ntrue <- vector("list",num.sim)  

  m.N <- vector("list",num.sim)  

   

  m.bias.sigma <- vector("list",num.sim) #bias in sigma 

  sd.bias.sigma <- vector("list",num.sim) 

  baye.pvalue.sigma <- vector("list",num.sim) 

  m.sig <- vector("list", num.sim) 

   

  m.bias.Ntot <- vector("list",num.sim) #bias in total N 

  sd.bias.Ntot <- vector("list",num.sim) 

  baye.pvalue.Ntot <- vector("list",num.sim) 

  m.bias.Ntot <- vector("list", num.sim) 

  m.Ntot.true <- vector("list", num.sim) 

  m.Ntot <- vector("list", num.sim) 

   

  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 

  sd.bias.lam <- vector("list",num.sim) 

  baye.pvalue.lam <- vector("list",num.sim) 

  m.lambda <- vector("list", num.sim) 

   

  m.bias.den <- vector("list", num.sim) #bias in density 
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  sd.bias.den <- vector("list", num.sim) 

  baye.pvalue.den <- vector("list", num.sim) 

  m.density <- vector("list", num.sim) 

  m.density.true <- vector("list", num.sim) 

   

  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at 

site) 

  sd.CV.lam <- vector("list",num.sim) 

  prop.CV.lam <- vector("list", num.sim) 

   

  m.CV.Ntot <- vector("list",num.sim) #coefficient of variation for total N 

  sd.CV.Ntot <- vector("list",num.sim) 

  prop.CV.Ntot <- vector("list", num.sim) 

   

  #******************** 

  # Start Simulation 

  #******************** 

   

  # Stick simulation in loop and replicate num.sim times 

  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 

     

    # ************** 

    # Simulate Data 

    # ************** 

    # Simulate abundance model (Poisson GLM for N) 

    N <- rpois(nsites, lambda)                  # site-specific abundances 

    N.true <- N #true abundance at each site, for a transect this is the same as N (differs for point 

counts) 

    B <- 100 #strip half-width 

    L <- L #length of transect 

    area <- nsites*L*2*B/1000000 #area meters squared 

    den.true <- sum(N)/area # true density  

     

    # Simulate observation model - set up empty dataframe 

    data <- NULL 

     

    for(i in 1:nsites){ 

      if(N[i]==0){ #if abundance at a site is 0 

        data <- rbind(data, c(i,NA,NA,NA,NA)) # save site, y=1, u, v, d 

        next 

      } 

      # Simulation of distances, uniformly, for each individual in population 

      # note it piles up all N[i] guys on one side of the transect 

      d <- runif(N[i], 0, B) 
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      p <- exp(-d *d / (2 * (sigma^2))) # half-normal detection function 

      # Determine if individuals are captured or not 

      y <- rbinom(N[i], 1, p) 

      u <- v <- rep(NA, N[i])   # coordinates (u,v) 

      # Subset to "captured" individuals only 

      d <- d[y==1] 

      u <- u[y==1] 

      v <- v[y==1] 

      y <- y[y==1] 

       

       

      # Compile things into a matrix and insert NA if no individuals were 

      # captured at site i. Coordinates (u,v) are not used here. 

      if(sum(y) > 0) 

        data <- rbind(data, cbind(rep(i, sum(y)), y, u, v, d)) 

      else 

        data <- rbind(data, c(i,NA,NA,NA,NA)) # make a row of missing data 

    } 

    colnames(data) <- c("site", "y", "u", "v", "d") # name 1st col "site" 

     

    # ************************* 

    # Prep Data for analysis 

    # ************************* 

    ncap <- table(data[,1])            # ncap = 1 if no individuals captured 

    sites0 <- data[is.na(data[,2]),1] # sites where nothing was seen 

    ncap[as.character(sites0)] <- 0    # Fill in 0 for sites with no detections 

    ncap <- as.vector(ncap)            # Number of individuals detected per site 

    site <- data[!is.na(data[,2]),1]   # Site ID of each observation 

    delta <- 10                       # Distance bin width for rect. approx. 

    midpt <- seq(delta/2, B, delta)    # Make mid-points and chop up data 

    dclass <- data[,5] %/% delta + 1   # Convert distance to distance category 

    nD <- length(midpt)                # Number of distance intervals 

    dclass <- dclass[!is.na(data[,2])] # Observed categorical observations 

    nind <- length(dclass)             # Total number of individuals detected 

     

    # Bundle data 

    win.data <- list(nsites=nsites, nind=nind, B=B, nD=nD, midpt=midpt, delta=delta, ncap=ncap, 

dclass=dclass, site=site, L=L) 

     

    # initial values 

    Nst <- ncap + 1 # This line is vital 

    inits <- function() list(N = Nst, sigma = runif(1,30,60)) 

     

    # Define parameters to be monitored 
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    params <- c("lambda", "sigma", "Ntotal", "D", "N") 

     

    # MCMC settings 

    ni <- 5000 

    nt <- 1 

    nb <- 1000 

    nc <- 3 

     

    start.time = Sys.time()  #set timer 

    # run model 

    out <- jags(win.data, inits, params, "simHDSlinefunction.txt", n.chains = nc, 

                n.thin = nt, n.iter = ni, n.burnin = nb, parallel = TRUE) 

    print(out) 

     

    end.time = Sys.time() 

    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 

    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 

     

    #************************************** 

    #### EValuate bias #### 

    #************************************** 

    #Bias in N (site specific abundance) 

    bias.Nsite <- out$mean$N - N.true #calculates bias 

    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 

    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 

    baye.pvalue.Nsite[k] <-mean(N.true > out$mean$N)  #Bayesian P-value (proportion of 

simulations where the true abundance was greater than the estimated abundance - values close to 

0 or 1 indicate significant bias) 

     

    #Bias in lambda (average local abundance) - descriptions same as above 

    bias.lam <- out$mean$lambda - lambda 

    m.bias.lam[k] <- mean(bias.lam) 

    sd.bias.lam[k] <- sd(bias.lam) 

    baye.pvalue.lam[k] <- mean(lambda > out$mean$lambda) 

    m.lambda[k] <- out$mean$lambda 

     

    #Bias in sigma - descriptions same as above 

    bias.sigma <- out$mean$sigma - sigma 

    m.bias.sigma[k] <- mean(bias.sigma) 

    sd.bias.sigma[k] <- sd(bias.sigma) 

    baye.pvalue.sigma[k] <- mean(sigma > out$mean$sigma) 

    m.sig[k] <- out$mean$sigma 

     

    #Bias in Ntotal (total population size)  - descriptions same as above 
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    bias.Ntot <- out$mean$Ntotal - sum(N.true) 

    m.bias.Ntot[k] <- mean(bias.Ntot) 

    sd.bias.Ntot[k] <- sd(bias.Ntot) 

    baye.pvalue.Ntot[k] <- mean(sum(N.true) > out$mean$Ntotal) 

    m.Ntot.true[k] <- sum(N.true) 

    m.Ntot[k] <- out$mean$Ntotal 

     

    #Bias in density - descriptions same as above 

    bias.den <- out$mean$D - den.true 

    m.bias.den[k] <- mean(bias.den) 

    sd.bias.den[k] <- sd(bias.den) 

    baye.pvalue.den[k] <- mean(den.true > out$mean$D) 

    m.density.true[k] <- mean(den.true) 

    m.density[k] <- out$mean$D 

     

    #Coefficient of Variation in Ntotal (total population size) - want to be under 15% 

    CV.Ntot <- out$sd$Ntotal/out$mean$Ntotal #standard deviation divided by mean 

    m.CV.Ntot[k] <- mean(CV.Ntot) 

    sd.CV.Ntot[k] <- sd(CV.Ntot) 

    prop.CV.Ntot[k] <- mean(CV.Ntot < 0.15) 

     

    #Coefficient of Variation in local abundance (lambda / average local abundance) 

    CV.lam <- out$sd$lambda/out$mean$lambda 

    m.CV.lam[k] <- mean(CV.lam) 

    sd.CV.lam[k] <- sd(CV.lam) 

    prop.CV.lam[k] <- mean(CV.lam < 0.15) 

     

  }  ) #This will be the end of the simulations 

   

  #******************** 

  # Summary of Results  

  #******************** 

  results <- c("lambda", "sigma", "N.total", "N.site", "N.total.CV", "lambda.CV", 

"Prob.CV.Ntot", "Prob.CV.lambda") 

  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.sigma))), 

(mean(unlist(m.bias.Ntot))), (mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.Ntot))), 

(mean(unlist(m.CV.lam))), NA, NA),2) 

   

  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.sigma), 0.05)), 

(quantile(unlist(m.bias.Ntot), 0.05)), (quantile(unlist(m.bias.Nsite), 0.05)), 

(quantile(unlist(m.CV.Ntot), 0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 90% 

credible interval 
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  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.sigma), 0.95)), 

(quantile(unlist(m.bias.Ntot), 0.95)), (quantile(unlist(m.bias.Nsite), 0.95)), 

(quantile(unlist(m.CV.Ntot), 0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 90% 

credible interval 

   

  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Ntot) > 0.15)), 

(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 

   

  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.sigma))), 

(mean(unlist(baye.pvalue.Ntot))), (mean(unlist(baye.pvalue.Nsite))), NA, NA, NA, NA),2)  

   

  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) 

#creates a table of results 

  print(sim.results) 

   

  #**************** 

  #Post processing  

  #**************** 

  # Set plots so that six plots can be created in one image 

  par(mfrow = c(6,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 

   

  # Plots 

  (hist(unlist(m.bias.Nsite), xlim=c(-10,10), main="", ylab="N.site")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.sigma), xlim=c(-10,10), main="", ylab="Sigma")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.Ntot), xlim=c(-200,200), main="", ylab="Total N")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.Ntot), xlim=c(0,1), main="", ylab="CV Ntotal")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.lam), xlim=c(0,1), main="", ylab="CV lambda")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = 

unlist(m.bias.lam), m.bias.sigma = unlist(m.bias.sigma), m.bias.Ntot = unlist(m.bias.Ntot), 

m.CV.Ntot = unlist(m.CV.Ntot), m.CV.lam = unlist(m.CV.lam), lambda = lambda, sigma = 

sigma, nsites = nsites, num.sim = num.sim, density.true = unlist(m.density.true), m.density = 
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unlist(m.density), Ntot.true = unlist(m.Ntot.true), m.Ntot = unlist(m.Ntot), m.sigma = 

unlist(m.sig), m.lambda = unlist(m.lambda), out = out)) 

} 
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APPENDIX I 

APPENDIX I: BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR 

LINE TRANSECTS EVALUATED USING TIME-REMOVAL HIERARCHICAL DISTANCE 

SAMPLING 
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Complete Bayesian model specification and simulation code in R language for evaluating Dusky 

Grouse survey protocols for point counts analyzed using time-removal HDS where local 

abundance and probability of detection (sigma) were kept constant.  

# Function for simulating and analyzing data using a hierarchical distance sampling model and 

time removal for point counts where both abundance, detection, and availability is kept constant.  

# Data is simulated over a square using average local abundance for the square (lambda) and 

then truncated into a circle with radius B with an average local abundance equal to the estimated 

average local abundance of a point count site from the 2020 & 2021 data 

 

# Code adapted from:  

#Kery, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of 

distribution, abundance, and species richness in R and BUGS. Academic Press, London, United 

Kingdom. 

#Amundson, C. L., J. A. Royle, C. M. Handel. 2014. A hierarchical model combining distance 

sampling and time removal to estimate detection probability during avian point counts. The Auk 

131(4): 476-494. 

#Hostetter, N. J., B. Gardner, T. S. Sillett, K. H. Pollock, T. R. Simmons. 2019. An integrated 

model decomposing the components of detection probability and abundance in unmarked 

populations. Ecosphere 10(3) 

 

# nsites = number of sites 

# lambda = average local abundance per site over a square with area 2B x 2B where B = radius 

of circle 

# lambda1 = average local abundance per point count site (so average local abundance within a 

circle with a radius of B) 

# sigma = sigma for the half-normal detection function 

# num.sim = number of simulations 

# p.avail = overall availability probability 

# int.avail = time interval-specific availability probability 

 

Sim.HDS.TR.function <- function(nsites = nsites, lambda = lambda, sigma = sigma, num.sim = 

num.sim, lambda1 = lambda1, p.avail = p.avail) { 

  library(jagsUI) # use the JAGS for analyzing data within a Bayesian framework 

   

  #*************** 

  # Define Model  

  #*************** 

   

  # Specify model in Bugs language, but going to use JagsUI/jags 

  sink("simHDS_TR.txt") 

  cat(" 

model { 

  # Prior distributions for basic parameters 
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  p.a ~ dunif(0,1) # vague prior for availability (during a) 

  sigma ~ dunif(0,100) # vague prior for sigma 

  lambda ~ dgamma(0.001, 0.001) # vague prior for abundance 

   

for(s in 1:nsites){ 

 

    # Distance sampling detection probability model 

    for(b in 1:nD){ 

      log(g[b,s]) <- -mdpts[b] * mdpts[b] / (2*sigma*sigma)  # Half-normal 

      f[b,s] <- (2 * mdpts[b] * delta ) / (B*B) # Radial density function 

      pi.pd[b,s] <- g[b,s]*f[b,s]  #  Product Pr(detect)*Pr(distribution) 

      pi.pd.c[b,s] <- pi.pd[b,s]/pdet[s]  # Conditional probabilities 

    } 

    

    pdet[s] <- sum(pi.pd[,s])  # Probability of detection at all 

     

    # Time-removal probabilities 

    for (k in 1:K){ 

      pi.pa[k,s] <- p.a * pow(1-p.a, (k-1)) 

      pi.pa.c[k,s] <- pi.pa[k,s]/phi[s] # Conditional probabilities of availability 

    } 

     

    phi[s] <- sum(pi.pa[,s]) # Probability of ever available 

   

  } 

  # Conditional observation model for categorical covariates 

  for(i in 1:nobs){ 

    dclass[i] ~ dcat(pi.pd.c[,site[i]]) 

    tint[i] ~ dcat(pi.pa.c[,site[i]]) 

  } 

  # Abundance model 

  for(s in 1:nsites){ 

     

    n[s] ~ dbin(pdet[s], N[s])    # counts related to probability of detection given availability 

    N[s] ~ dbin(phi[s],M[s])      # Number of available individuals 

    M[s] ~ dpois(lambda)       # Abundance per survey/site/point 

     

  } 

 

  # Derived quantities 

  Mtot <- sum(M[])  # Total population size 

  Ntot <- sum(N[])  # Total available population size 

  PDETmean <- mean(pdet[]) # Mean perceptibility across sites 

  PHImean <- mean(phi[]) # Mean availability across sites 
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} 

    ",fill = TRUE) 

  sink() 

   

  #************************************************** 

  # Loop for replicating datasets and assessing bias 

  #************************************************** 

   

  num.sim <- num.sim 

   

  # Create empty vectors to store results from replicated datasets 

  m.bias.Msite <- vector("list",num.sim)  #examine bias in abundance (M) at each site 

  sd.bias.Msite <- vector("list",num.sim) 

  baye.pvalue.Msite <- vector("list",num.sim)  

  m.Mtrue <- vector("list",num.sim)  

  m.M <- vector("list",num.sim)  

   

  m.bias.sigma <- vector("list",num.sim) #bias in probablity of detection 

  sd.bias.sigma <- vector("list",num.sim) 

  baye.pvalue.sigma <- vector("list",num.sim) 

  m.sig <- vector("list", num.sim) 

   

  m.bias.PHImean <- vector("list",num.sim) #bias in probablity of availability 

  sd.bias.PHImean <- vector("list",num.sim) 

  baye.pvalue.PHImean <- vector("list",num.sim) 

  m.PHImean <- vector("list", num.sim) 

   

  m.bias.Mtot <- vector("list",num.sim) #bias in total M 

  sd.bias.Mtot <- vector("list",num.sim) 

  baye.pvalue.Mtot <- vector("list",num.sim) 

  m.bias.Mtot <- vector("list", num.sim) 

  m.Mtot.true <- vector("list", num.sim) 

  m.Mtot <- vector("list", num.sim) 

   

  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 

  sd.bias.lam <- vector("list",num.sim) 

  baye.pvalue.lam <- vector("list",num.sim) 

  m.lambda <- vector("list", num.sim) 

   

  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at 

site) 

  sd.CV.lam <- vector("list",num.sim) 

  prop.CV.lam <- vector("list", num.sim) 
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  m.CV.Mtot <- vector("list",num.sim) #coefficient of variation for total N 

  sd.CV.Mtot <- vector("list",num.sim) 

  prop.CV.Mtot <- vector("list", num.sim) 

   

  #******************** 

  # Start Simulation 

  #******************** 

   

  # Stick simulation in loop and replicate num.sim times 

  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 

     

    # ************** 

    # Simulate Data 

    # ************** 

    # Simulate superpopulation abundance model for groups (Poisson GLM for M) 

    M <- rpois(nsites, lambda)            # site-specific abundance for square 

    M.true <- M                           # for point: inside of circle (radius = B) 

    B <- 100 #radius for circle (meters) 

    K <- 4 #number of time intervals 

 

     

    # Simulate observation model - set up empty dataframe 

    data <- NULL 

    for(i in 1:nsites){ 

      if(M[i]==0){ #if abundance at a site is 0 

        data <- rbind(data,c(i,NA,NA,NA,NA,NA)) # save site, y=1, u, v, d, tint 

        next 

      } 

       

      # Simulation data on a square 

      u <- runif(M[i], 0, 2*B)   #x  

      v <- runif(M[i], 0, 2*B)   #y  

      d <- sqrt((u-B)^2 + (v-B)^2)  #distance 

      M.true[i] <- sum(d<= B)    # Population size inside of count circle 

       

      # Can only count individuals in the circle, so set to zero probability of individuals in the 

corners 

      p <- ifelse(d <= B, 1, 0) * exp(-d *d / (2 * (sigma^2))) #half-normal detection function  

       

      # Time-removal 

      int.avail <- 1 - (1-p.avail)^(1/K) #calculate time-interval specific availability probability 

      rem.probs <- c(int.avail, ((1-int.avail)^(1:(K-1)))*int.avail) #calculate probability for each 

time interval 
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      mn.probs <- c(rem.probs, 1-sum(rem.probs)) #probability for each time interval + probability 

not ever available 

      aux <- sample(1:(K+1), M[i], replace=TRUE, prob=mn.probs) 

      aux[aux==(K+1)] <- 0 #if not capture during intervals 1-K, set to 0 

       

      newp <-  p * as.numeric(aux!=0) #combine probability of detection with availability 

      navail <- sum(aux!=0) 

       

      if(navail==0){ 

        data <- rbind(data,c(i,NA,NA,NA,NA,NA)) # save site, y=1, u, v, d 

        next 

      } 

       

      # generate count of birds based on combined probability of detection 

      y <- rbinom(M[i], 1, newp) 

      # Subset to "captured" individuals only 

      u <- u[y==1] 

      v <- v[y==1]  

      d <- d[y==1]   

      aux <- aux[y==1]   

      y <- y[ y==1] 

       

      # Now compile things into a matrix and insert NA if no individuals were 

      # captured at site i. Coordinates (u,v) are not used here. 

      if(sum(y)>0){ 

        data <- rbind(data, cbind(rep(i, sum(y)), y, u, v, d, aux)) 

      } else { 

        data <- rbind(data, c(i,NA,NA,NA,NA,NA)) # make a row of missing data 

      } 

    } # end of for loop 

    colnames(data)[1] <- "site" 

     

    # ************************* 

    # Prep Data for analysis 

    # ************************* 

    # Create the observed encounter frequencies per site (include the zeros! ) 

    data <- data[!is.na(data[,2]),]   # Sites where detections did occur 

    n <- rep(0,nsites)                # The full site vector 

    names(n) <- 1:nsites 

    n[names(table(data[,1]))] <- table(data[,1])  # Put in the counts 

    site <- data[,1] 

    nobs <- nrow(data) 

     

    # Create the distance class data 



209 

 

 

    nD <- 10             # Number of distance classes 

    delta <- B/nD        # bin size or width 

    mdpts <- seq(delta/2,B,delta) # midpoint distance of bins up to max distance 

    dclass <- data[,"d"] # distance class for each observation 

    dclass <- dclass%/%delta  +1 

    tint <- data[,"aux"] 

     

    # Bundle data and summarize 

    win.data<-list(n=n, site=site, dclass=as.numeric(dclass),nsites=nsites, 

                        nobs=nobs, delta=delta, nD=nD,mdpts=mdpts,B=B, K=K, tint=tint) 

     

    Mst <- Nst <- n + 1 

    inits <- function(){list(M=Mst, N=Nst)} 

    params <- c("PDETmean", "PHImean", "Mtot", "Ntot", "p.a", "sigma", "lambda", "N", "M") 

     

    # MCMC settings 

    ni <- 20000 

    nt <- 1 

    nb <- 1000 

    nc <- 3 

     

    start.time = Sys.time()  #set timer 

    # run model 

    out <- jags(win.data, inits, params, "simHDS_TR.txt", n.chains = nc, n.thin = nt, n.iter = ni, 

n.burnin = nb, parallel = TRUE) 

    print(out) 

     

    end.time = Sys.time() 

    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 

    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 

     

    #************************************** 

    #### Evaluate bias #### 

    #************************************** 

    ##Bias in N (site specific abundance) 

    bias.Msite <- out$mean$M - M.true #calculates bias 

    m.bias.Msite[k] <- mean(bias.Msite) #averages bias and places within vector 

    sd.bias.Msite[k] <- sd(bias.Msite) #gets standard deviation of bias places within vector 

    baye.pvalue.Msite[k] <-mean(M.true > out$mean$M)  #Bayesian P-value (proportion of 

simulations where the true abundance was greater than the estimated abundance - values close to 

0 or 1 indicate significant bias) 

     

    ##Bias in lambda (average local abundance) - descriptions same as above 
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    bias.lam <- out$mean$lambda - lambda1 #calculates bias (estimated lambda for circle - true 

lambda per circle(lambda1)) 

    m.bias.lam[k] <- mean(bias.lam) 

    sd.bias.lam[k] <- sd(bias.lam) 

    baye.pvalue.lam[k] <- mean(lambda1 > out$mean$lambda) 

    m.lambda[k] <- out$mean$lambda 

     

    ##Bias in sigma - descriptions same as above 

    bias.sigma <- out$mean$sigma - sigma 

    m.bias.sigma[k] <- mean(bias.sigma) 

    sd.bias.sigma[k] <- sd(bias.sigma) 

    baye.pvalue.sigma[k] <- mean(sigma > out$mean$sigma) 

    m.sig[k] <- out$mean$sigma 

     

    ##Bias in availability - descriptions same as above 

    bias.PHImean <- out$mean$PHImean - p.avail 

    m.bias.PHImean[k] <- mean(bias.PHImean) 

    sd.bias.PHImean[k] <- sd(bias.PHImean) 

    baye.pvalue.PHImean[k] <- mean(p.avail > out$mean$PHImean) 

    m.PHImean[k] <- out$mean$PHImean 

     

    ##Bias in Mtotal (total population size)  - descriptions same as above 

    bias.Mtot <- out$mean$Mtot - sum(M.true) 

    m.bias.Mtot[k] <- mean(bias.Mtot) 

    sd.bias.Mtot[k] <- sd(bias.Mtot) 

    baye.pvalue.Mtot[k] <- mean(sum(M.true) > out$mean$Mtot) 

    m.Mtot.true[k] <- sum(M.true) 

    m.Mtot[k] <- out$mean$Mtot 

 

    ##Coefficient of Variation in Mtotal (total population size) - want to be under 15% 

    CV.Mtot <- out$sd$Mtot/out$mean$Mtot #standard deviation divided by mean 

    m.CV.Mtot[k] <- mean(CV.Mtot) 

    sd.CV.Mtot[k] <- sd(CV.Mtot) 

    prop.CV.Mtot[k] <- mean(CV.Mtot < 0.15) 

     

    #Coefficient of Variation in local abundance (lambda / average local abundance) 

    CV.lam <- out$sd$lambda/out$mean$lambda 

    m.CV.lam[k] <- mean(CV.lam) 

    sd.CV.lam[k] <- sd(CV.lam) 

    prop.CV.lam[k] <- mean(CV.lam < 0.15) 

     

  }  ) #This will be the end of the simulations 

   

  #******************** 
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  # Summary of Results  

  #******************** 

  results <- c("lambda", "sigma", "PHImean", "M.total", "M.site", "N.total.CV", "lambda.CV", 

"Prob.CV.Ntot", "Prob.CV.lambda") 

  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.sigma))), 

(mean(unlist(m.bias.PHImean))), (mean(unlist(m.bias.Mtot))), (mean(unlist(m.bias.Msite))), 

(mean(unlist(m.CV.Mtot))), (mean(unlist(m.CV.lam))), NA, NA),2) 

   

  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.sigma), 0.05)), 

(quantile(unlist(m.bias.PHImean), 0.05)), (quantile(unlist(m.bias.Mtot), 0.05)), 

(quantile(unlist(m.bias.Msite), 0.05)), (quantile(unlist(m.CV.Mtot), 0.05)), 

(quantile(unlist(m.CV.lam), 0.05)), NA, NA),2) #lower 90% credible interval 

   

  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.sigma), 0.95)), 

(quantile(unlist(m.bias.PHImean), 0.95)), (quantile(unlist(m.bias.Mtot), 0.95)), 

(quantile(unlist(m.bias.Msite), 0.95)), (quantile(unlist(m.CV.Mtot), 0.95)), 

(quantile(unlist(m.CV.lam), 0.95)), NA, NA),2) #upper 90% credible interval 

   

  greater.15.CV <- c(NA, NA, NA, NA, NA, NA, NA, (mean(unlist(m.CV.Mtot) > 0.15)), 

(mean(unlist(m.CV.lam) > 0.15))) #percent of CV's greater than 15% 

   

  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.sigma))), 

(mean(unlist(baye.pvalue.PHImean))), (mean(unlist(baye.pvalue.Mtot))), 

(mean(unlist(baye.pvalue.Msite))), NA, NA, NA, NA),2) 

   

  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) 

#creates a table of results 

  print(sim.results) 

   

  #**************** 

  #Post processing  

  #**************** 

  # Set plots so that seven plots can be created in one image 

  par(mfrow = c(7,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 

   

  # Plots 

  (hist(unlist(m.bias.Msite), xlim=c(-10,10), main="", ylab="M.site")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.sigma), xlim=c(-10,10), main="", ylab="Sigma")) 

  (abline(v=0, col="red", lwd=3)) 
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  (hist(unlist(m.bias.PHImean), xlim=c(-10,10), main="", ylab="PHI mean")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.Mtot), xlim=c(-200,200), main="", ylab="Total M")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.Mtot), xlim=c(0,1), main="", ylab="CV Mtotal")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.lam), xlim=c(0,1), main="", ylab="CV lambda")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  return(list(sim.results=sim.results, m.bias.Msite=unlist(m.bias.Msite), m.bias.lam = 

unlist(m.bias.lam), m.bias.sigma = unlist(m.bias.sigma), m.bias.PHImean = 

unlist(m.bias.PHImean), m.bias.Mtot = unlist(m.bias.Mtot), m.CV.Mtot = unlist(m.CV.Mtot), 

m.CV.lam = unlist(m.CV.lam), lambda = lambda, sigma = sigma, p.avail= p.avail, nsites = 

nsites, num.sim = num.sim, Mtot.true = unlist(m.Mtot.true), m.Mtot = unlist(m.Mtot), m.sigma = 

unlist(m.sig), m.PHImean = unlist(m.PHImean), m.lambda = unlist(m.lambda), out = out)) 

} 
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APPENDIX J 

BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR NAÏVE MODELS 
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Complete Bayesian model specification and simulation code in R language for evaluating Dusky 

Grouse survey protocols for point counts analyzed using naïve models where local abundance 

and probability of detection were kept constant.  

# Function for simulating and analyzing data using a naive model where average local abundance 

is estimated without take probability of detection into account for point counts. Local abundance 

is kept similar across all sites and probability of detection is kept constant. 

 

# S = number of spatial reps/ number of sites 

# V = number of visits at each site (temporal reps) - which was 1 for these simulations 

# lambda = average local abundance  

# prob = probability of detection 

# num.sim = number of simulations 

 

#Simulate Data - Nmixture model. Parameters estimated: lambda and probability of detection 

Sim.Naive.fn <- function(S=S, V=V, lambda = lambda, prob = prob, num.sim = num.sim) { 

  library(jagsUI) 

   

  #*************** 

  # Define Model  

  #*************** 

   

  # Specify model in Bugs language, but going to use JagsUI/jags 

  sink("Naive.txt") 

  cat(" 

    model { 

     

    # Priors 

       lambda ~ dgamma(0.005, 0.005)      # Standard vague prior for lambda 

     

    # Likelihood 

       # Biological model for true abundance 

          for (i in 1:S) { 

            N[i] ~ dpois(lambda) 

         

         } # i 

    #Derived parameters 

        Ntotal <- sum(N[]) 

 

    } 

    ",fill = TRUE) 

  sink() 

   

  #************************************************** 

  # Loop for replicating datasets and assessing bias 
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  #************************************************** 

   

  num.sim <- num.sim 

   

  m.bias.Nsite <- vector("list",num.sim)  #examine bias in abundance (N) at each site 

  sd.bias.Nsite <- vector("list",num.sim) 

  baye.pvalue.Nsite <- vector("list",num.sim)  

   

  m.bias.Ntot <- vector("list",num.sim) #bias in total N 

  sd.bias.Ntot <- vector("list",num.sim) 

  baye.pvalue.Ntot <- vector("list",num.sim) 

   

  m.bias.lam <- vector("list",num.sim)  #bias in recovered lambda (mean abundance at site) 

  sd.bias.lam <- vector("list",num.sim) 

  baye.pvalue.lam <- vector("list",num.sim) 

   

   

  m.CV.lam <- vector("list",num.sim)  #coefficient of variation for lambda (mean abundance at 

site) 

  sd.CV.lam <- vector("list",num.sim) 

  prop.CV.lam <- vector("list", num.sim) 

   

  #******************** 

  # Start Simulation 

  #******************** 

   

  # Stick simulation in loop and replicate num.sim times 

  system.time(for (k in 1:num.sim) {  #keep track of how long simulation takes 

     

    #Simulate data 

    S = S  # spatial reps 

    V = V  # temporal reps 

    lambda = lambda # mean abundance at site 

    prob = prob # probability of detection 

     

    # Create structure to contain counts 

    y <- array(dim = c(S,V)) 

     

    # sample abundance from a Poisson distribution 

    N <- rpois(n=S, lambda=lambda) 

     

    # sample counts from a Binomial distribution (N, prob) 

    for (j in 1:V){ 

      y[,j] <- rbinom(n = S, size = N, prob = prob) 
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    } 

     

    Count.data <- apply(y,1,max) #max count if more than 1 visit, if 1 visit then counts for that 

visit 

     

    win.data <- list(N = Count.data, S = nrow(y)) 

     

    # initial values 

    inits <- function() list(lambda = 1) 

     

    # Define parameters to be monitored 

    params <- c("lambda", "Ntotal", "N") 

     

    # MCMC settings 

    ni <- 3000 

    nt <- 1 

    nb <- 100 

    nc <- 3 

     

    start.time = Sys.time()  #set timer 

    # run model 

    out <- jags(win.data, inits, params, "Naive.txt", n.chains = nc, 

                n.thin = nt, n.iter = ni, n.burnin = nb) 

    print(out) 

     

    end.time = Sys.time() 

    elapsed.time = round(difftime(end.time, start.time, units = 'mins'), dig = 2) 

    cat('sim', k,', Posterior computed in ', elapsed.time, ' minutes\n\n', sep='') 

     

    #************************************** 

    #### Evaluate bias #### 

    #************************************** 

    #Bias in N (site specific abundance) 

    bias.Nsite <- out$mean$N - N #calculates bias 

    m.bias.Nsite[k] <- mean(bias.Nsite) #averages bias and places within vector 

    sd.bias.Nsite[k] <- sd(bias.Nsite) #gets standard deviation of bias places within vector 

    baye.pvalue.Nsite[k] <-mean(N > out$mean$N)  #Bayesian P-value (proportion of simulations 

where the true abundance was greater than the estimated abundance - values close to 0 or 1 

indicate significant bias) 

     

    #Bias in lambda (average local abundance) - descriptions same as above 

    bias.lam <- out$mean$lambda - lambda 

    m.bias.lam[k] <- mean(bias.lam) 

    sd.bias.lam[k] <- sd(bias.lam) 
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    baye.pvalue.lam[k] <- mean(lambda > out$mean$lambda) 

     

    #Bias in Ntotal (total population size)  - descriptions same as above 

    bias.Ntot <- out$mean$Ntotal - sum(N) 

    m.bias.Ntot[k] <- mean(bias.Ntot) 

    sd.bias.Ntot[k] <- sd(bias.Ntot) 

    baye.pvalue.Ntot[k] <- mean(sum(N) > out$mean$Ntotal) 

     

    #Coefficient of Variation in local abundance (lambda / average local abundance) 

    CV.lam <- out$sd$lambda/out$mean$lambda #standard deviation divided by mean 

    m.CV.lam[k] <- mean(CV.lam) 

    sd.CV.lam[k] <- sd(CV.lam) 

    prop.CV.lam[k] <- mean(CV.lam < 0.15) 

     

  }  ) #This will be the end of the simulations 

   

  #******************** 

  # Summary of Results  

  #******************** 

  results <- c("lambda", "N.total", "N.site", "lambda.CV", "Prob.CV.lambda") 

  mean.bias <- round(c((mean(unlist(m.bias.lam))), (mean(unlist(m.bias.Ntot))), 

(mean(unlist(m.bias.Nsite))), (mean(unlist(m.CV.lam))), NA),2) 

   

  lower.CI <- round(c((quantile(unlist(m.bias.lam), 0.05)), (quantile(unlist(m.bias.Ntot), 0.05)), 

(quantile(unlist(m.bias.Nsite), 0.05)), (quantile(unlist(m.CV.lam), 0.05)), NA),2) #upper 90% 

credible interval 

   

  upper.CI <- round(c((quantile(unlist(m.bias.lam), 0.95)), (quantile(unlist(m.bias.Ntot), 0.95)), 

(quantile(unlist(m.bias.Nsite), 0.95)), (quantile(unlist(m.CV.lam), 0.95)), NA),2) #lower 90% 

credible interval 

   

  greater.15.CV <- c(NA, NA, NA, NA, (mean(unlist(m.CV.lam) > 0.15))) 

   

  Baye.pvalue <- round(c((mean(unlist(baye.pvalue.lam))), (mean(unlist(baye.pvalue.Ntot))), 

(mean(unlist(baye.pvalue.Nsite))), NA, NA),2) 

   

  sim.results <- data.frame(results,mean.bias,lower.CI, upper.CI, Baye.pvalue, greater.15.CV) 

#creates a table of results 

  print(sim.results) 

   

  #**************** 

  #Post processing  

  #**************** 

  # Set plots so that six plots can be created in one image, which is then saved in a  
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  # word document Liz_Sim_Results_Figures 

  par(mfrow = c(4,1), mai=c(0.5,0.2,0.2,0.2), mar=c(1,5,1,2), oma=c(1,1,1,1), las=1) 

   

  # Plots 

  (hist(unlist(m.bias.Nsite), xlim=c(-5,5), breaks=120, main="", ylab="N.site")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.lam), xlim=c(-1,1), main="", ylab="lambda")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.bias.Ntot), xlim=c(-100,100), main="", ylab="Total N")) 

  (abline(v=0, col="red", lwd=3)) 

   

  (hist(unlist(m.CV.lam), xlim=c(0,0.5), main="", ylab="CV lambda")) 

  (abline(v=0.15, col="red", lwd=3)) 

   

  return(list(sim.results=sim.results, m.bias.Nsite=unlist(m.bias.Nsite), m.bias.lam = 

unlist(m.bias.lam), m.bias.Ntot = unlist(m.bias.Ntot), m.CV.lam = unlist(m.CV.lam), lambda = 

lambda, prob = prob, S = S, V = V, num.sim = num.sim)) 

} 
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APPENDIX K 

APPENDIX K: BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR 

NAÏVE MODELS 



 

 

 

2
2
0
 

Table K1. Results of simulations for developing 2019 pilot season protocols. Estimates of mean abundance per site and probability of 

detection are from Utah-based researched. Mean (90% credible interval) for bias and coefficient of variation from 400 simulation runs 

for each suite of parameters. R = number of sites, J = number of replicate visits, 𝜆 = mean abundance per site, p = mean detection 

probability, CV = coefficient of variation for total population size (Total N), and N.site = estimated number of Dusky Grouse per 

survey site. Yes/No = whether the protocol meets management requirements. 
Simulation 
Parameters  Bias in λ Bias in p Bias in Total N Bias in N.site CV Total N 

Prob. 
CV 

N.total 
> 0.15 

Yes/ 
No 

R J λ p 

50 3 1.25 0.5 0.08 (-0.28 – 0.51) -0.01 (-0.14 – 0.11) 4.0 (-8.9 – 21.8) 0.08 (-0.17 – 0.43) 0.16 (0.09 – 0.27) 0.48 No 
100 3 1.25 0.5 0.05 (-0.21 – 0.36) -0.01 (-0.09 – 0.08) 4.8 (-14.3 – 25.7) 0.05 (-0.14 – 0.26) 0.09 (0.06 – 0.14) 0.02 Yes 
200 3 1.25 0.5 0.01 (-0.18 – 0.20) -0.004 (-0.06 – 0.05) 4.0 (-18.1 – 31.4) 0.02 (-0.09 – 0.15) 0.06 (0.05 – 0.08) 0.00 Yes 
500 3 1.25 0.5 0.008 (-0.11 – 0.11) -0.002 ( -0.04 – 0.04) 5.0 (-35.2 – 46.3) 0.01 (-0.07 – 0.09) 0.04 (0.03 – 0.05) 0.00 Yes 
50 2 1.25 0.5 0.35 (-0.30 – 1.87) -0.02 (-0.22 – 0.13) 17.2 (-12.5 – 90.1) 0.34 (-0.25 – 1.80) 0.39 (0.15 – 0.92) 0.94 No 

100 2 1.25 0.5 0.11 (-0.26 – 0.59) -0.01 (-0.14 – 0.10) 12.8 (-18.0 – 57.3) 0.13 (-0.18 – 0.57) 0.19 (0.11 – 0.34) 0.70 No 
200 2 1.25 0.5 0.06 (-0.19 – 0.31) -0.01 ( -0.09 – 0.08) 12.3 (-31.5 – 61.7) 0.06 (-0.16 – 0.31) 0.11 (0.08 – 0.16) 0.14 Yes-ish 
500 2 1.25 0.5 0.02 ( -0.12 – 0.21) -0.003 (-0.06 – 0.05) 10.0 (-53.1 – 88.9) 0.02 (-0.11 – 0.18) 0.07 (0.05 – 008) 0.00 Yes 
50 3 0.625 0.5 0.07 (-0.19 – 0.39) -0.02 (-0.16 – 0.11) 3.1 (-4.5 – 15.3) 0.06 (-0.09 – 0.31) 0.19 (0.09 – 0.39) 0.59 No 

100 3 0.625 0.5 0.02 (-0.13 – 0.19) -0.01 (-0.11 – 0.08) 2.3 (-6.1 – 13.7) 0.02 (-0.06 – 0.14) 0.13 (0.07 – 0.16) 0.09 Yes-ish 
200 3 0.625 0.5 0.008 (-0.11 – 0.14) -0.004 ( -0.08 – 0.06) 2.3 ( -10.4 – 17.8) 0.01 (-0.05 – 0.09) 0.07 (0.05 – 0.09) 0.00 Yes 
500 3 0.625 0.5 0.008 (-0.08 – 0.10) -0.003 (-0.07 – 0.06) 5.1 (-29.7 – 48.5) 0.01 (-0.06 – 0.09) 0.08 (0.06 – 0.10) 0.00 Yes 
50 2 0.625 0.5 0.24 (-0.17 – 1.02) -0.03 (-0.25 – 0.17) 11.9 (-6.5 – 53.4) 0.24 (-0.13 – 1.06) 0.51 (0.16 – 1.10) 0.96 No 

100 2 0.625 0.5 0.09 (-0.15 – 0.47) -0.02 (-0.19 – 0.12) 9.1 (-10.9 – 45.4) 0.09 (-0.11 –0.45) 0.25 (0.11 – 0.47) 0.81 No 
200 2 0.625 0.5 0.04 (-0.12 – 0.23) -0.01 (-0.13 – 0.09) 8.2 (-17.9 – 44.3) 0.04 (-0.09 – 0.22) 0.14 (0.09 – 0.23) 0.34 No 
500 2 0.625 0.5 0.02 (-0.08 – 0.12) -0.008 (-0.07 – 0.06) 8.5 (-31.5 – 49.1 0.02 (-0.06 – 0.10) 0.08 (006 – 0.10) 0.00 Yes 
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APPENDIX L 

APPENDIX L: BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR 

NAÏVE MODELS 
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Table L1. Support for candidate models predicting abundance and probability of detection 

estimates using N-mixture models for surveys conducted with electronic playback for spring 

2019 pilot season. Three different abundance distributions are examined: Poisson distribution, 

negative binomial distribution, and zero-inflated Poisson distribution. The number of parameters 

(K), AIC values, Δ AIC values, and model weights (wi) are reported. 

Model K AIC Δ AIC wi 

Poisson distribution 2 171.72 0.00 0.47 

Zero-inflated Poisson distribution 3 172.59 0.87 0.3 

Negative Binomial distribution 3 173.19 1.47 0.23 
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APPENDIX M 

APPENDIX M: BAYESIAN MODEL SPECIFICATION AND SIMULATION CODE FOR 

NAÏVE MODELS 
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Table M1. Results of simulations evaluating the efficacy of survey protocols using parameters estimated from the 2019 spring pilot 

study. Mean (90% credible interval) for bias and coefficient of variation from 400 simulation runs for each suite of parameters. 

Simulations evaluated survey protocols with an estimate of abundance and probability of detection from spring 2019 surveys using 

electronic playback. R = number of survey sites, J = number of replicate visits, λ = mean abundance per site, p = mean detection 

probability; CV = coefficient of variation for total population size (Total N) and N.site = estimated number of Dusky Grouse per 

survey site. Yes/No = whether the protocol meets management requirements. 
 Simulation 

Parameters 
Bias in λ Bias in p Bias in Total N Bias in N.site CV Total N 

Prob. 

CV 

N.total 

> 0.15 

Yes/ 

No 
R J λ p 

100 3 0.36 0.28 0.09 (-0.13, 0.45) 0.01 (-0.13, 0.14) 9.13 (-10.30, 45.70) 0.09 (-0.10, 0.46) 0.41 (0.19, 0.77) 1.00 no 

200 3 0.36 0.28 0.03 (-0.10, 0.23) 0.01 (-0.09, 0.10) 6.85 (-16.26, 41.21) 0.03 (-0.08, 0.21) 0.24 (0.15, 0.38) 0.93 no 

300 3 0.36 0.28 0.02 (-0.09, 0.17) 0.01 (-0.07, 0.09) 5.07 (-22.22, 46.44) 0.02 (-0.07, 0.15) 0.18 (0.12, 0.26) 0.72 no 

400 3 0.36 0.28 0.01 (-0.08, 0.12) 0.01 (-0.06, 0.08) 3.29 (-26.64, 38.29) 0.01 (-0.07, 0.10) 0.15 (0.11, 0.20) 0.46 no 

500 3 0.36 0.28 0.01 (-0.07, 0.11) 0.00 (-0.06, 0.07) 4.68 (-27.85, 50.47) 0.01 (-0.06, 0.10) 0.13 (0.10, 0.18) 0.21 no 

600 3 0.36 0.28 0.01 (-0.07, 0.10) 0.00 (-0.06, 0.06) 3.46 (-37.49, 51.37) 0.01 (-0.06, 0.09) 0.12 (0.09, 0.16) 0.08 yes 

100 4 0.36 0.28 0.04 (-0.11, 0.22) 0.00 (-0.10, 0.11) 3.46 (-8.24, 20.94) 0.03 (-0.08, 0.21) 0.25 (0.14, 0.46) 0.90 no 

100 5 0.36 0.28 0.02 (-0.11, 0.17) 0.00 (-0.08, 0.09) 1.76 (-6.40, 12.54) 0.02 (-0.06, 0.13) 0.18 (0.11, 0.29) 0.65 no 

100 6 0.36 0.28 0.01 (-0.10, 0.15) 0.00 (-0.07, 0.08) 1.34 (-5.58, 10.51) 0.01 (-0.06, 0.11) 0.14 (0.09, 0.20) 0.28 no 

100 7 0.36 0.28 0.01 (-0.11, 0.14) 0.00 (-0.07, 0.07) 1.04 (-4.84, 7.61) 0.01 (-0.05, 0.08) 0.11 (0.07, 0.16) 0.09 no 

200 4 0.36 0.28 0.01 (-0.09, 0.15) 0.00 (-0.08, 0.07) 2.69 (-12.39, 25.35) 0.01 (-0.06, 0.13) 0.15 (0.11, 0.22) 0.44 no 

300 4 0.36 0.28 0.01 (-0.08, 0.10) 0.00 (-0.06, 0.06) 2.20 (-16.33, 22.77) 0.01 (-0.05, 0.08) 0.12 (0.09, 0.16) 0.09 yes-ish 

360 4 0.36 0.28 0.00 (-0.07, 0.10) 0.00 (-0.05, 0.05) 1.70 (-16.96, 26.32) 0.00 (-0.05, 0.07) 0.11 (0.08, 0.14) 0.02 yes 
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APPENDIX N 

APPENDIX N: EXAMINING THREE DIFFERENT DETECTION FUNCTIONS FOR 

HIERARCHICAL DISTANCE SAMPLING MODELS 
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Support for candidate models examining three different detection functions, half-normal, hazard-

rate, and uniform for hierarchical distance sampling transects for point counts. 

Table N1. Support for candidate models examining three different detection functions for 

hierarchical distance sampling models for point counts fitted with constant probability of 

detection and local density/abundance. 

Model K AICc Δ AICc wi 

Null model, Half-normal detection function 2 2226.8 0.0 1.00 

Null model, Uniform detection function 1 2332.4 105.7 0.00 

Null model, Hazard-rate detection function 3 2334.4 107.7 0.00 

Table N2. Support for candidate models examining three different detection functions for 

hierarchical distance sampling models for transects for visit 1 fitted with constant probability of 

detection and local density/abundance. 

Model K AICc Δ AICc wi 

Null model, Hazard-rate detection function 3 1211.34 0.00 0.82 

Null model, Half-normal detection function 2 1214.43 3.09 0.18 

Null model, Uniform detection function 1 1286.29 74.95 0.00 

Table N3. Support for candidate models examining two different detection functions, half-

normal and uniform, for hierarchical distance sampling models for transects for visit 2 fitted with 

constant probability of detection and local density/abundance. The model fitted with the hazard-

rate function did not converge and therefore is not included. 

Model K AICc Δ AICc wi 

Null model, Half-normal detection function 2 743.96 0.00 0.99 

Null model, Uniform detection function 1 753.55 9.59 0.01 
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APPENDIX O 

APPENDIX O: EVALUATION LINEAR AND NON-LINEAR RELATIONSHIPS FOR 

BETWEEN DETECTION PARAMETERS AND SURVEY CONDITIONS 



228 

 

 

Table O1. Model support for candidate models evaluating linear and nonlinear relationships 

between sigma for the half-normal detection function and day during the survey season, and 

minute since sunrise evaluated using HDS models for point counts. 

Model # Parameters AIC Delta AIC Model Weight 

Day2 4 2219.5 0.0 0.99 

Day 3 2228.8 9.3 0.01 

Minutes 3 2228.1 0.0 0.62 

Minutes2 4 2229.1 1.0 0.38 

Table O3. Model support for candidate models evaluating linear and nonlinear relationships 

between availability and day during the survey season, and minute since sunrise evaluated using 

time-removal HDS models. 

Model # Parameters AIC Delta AIC Model Weight 

Day2 4 2784.25 0.0 1.00 

Day 3 2797.80 13.55 0.00 

Minutes2 4 2797.02 0.0 0.56 

Minutes 3 2797.50 0.48 0.44 

Table O4. Model support for candidate models evaluating linear and nonlinear relationships 

between sigma and day during the survey season using HDS for line-transects. 

Model # Parameters AIC Delta AIC Model Weight 

Day2 4 1201.94 0.0 1.00 

Day 3 1214.62 12.68 0.00 
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APPENDIX P: SIMULATION RESULTS FOR NAÏVE MODELS 
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Table P1. Results of simulations evaluating the efficacy of survey protocols using parameters estimated from the 2020 and 2021 

spring Dusky Grouse surveys analyzed using naïve model where imperfect detection is not taken into account. Scenarios are based off 

the “best” protocols for the N-mixture models with four visits. Mean (90% credible interval) for bias and coefficient of variation from 

500 simulation runs for each suite of parameters. Simulations evaluated survey protocols with an estimate of abundance and 

probability of detection from spring 2019 surveys using electronic playback. R = number of survey sites, J = number of replicate 

visits, λ = mean abundance per site, p = mean detection probability; CV = coefficient of variation for total population size (Total N) 

and N.site = estimated number of Dusky Grouse per survey site. 

Simulation Parameters 

Bias in λ Bias in Total N Bias in N.site CV lambda 

Prob. 

CV 

lambda 

> 0.15 

Protocol 

meets 

 Management 

Requirements 
R  J λ p 

170 1 0.31 0.37 -0.19 (-0.23, -0.15) -33.32 (-44.00, -24.00) -0.20 (-0.26, -0.14) 0.23 (0.19, 0.28) 1.00 no 

240 1 0.18 0.37 -0.11 (-0.14, -0.08) -27.15 (-36.00, -19.00) -0.11 (-0.15, -0.08) 0.26 (0.21, 0.32) 1.00 no 

490 1 0.08 0.37 -0.05 (-0.06, -0.04) -24.44 (-33.00, -17.00) -0.05 (-0.07, -0.03) 0.27 (0.22, 0.34) 1.00 no 

50 1 0.31 0.59 -0.13 (-0.21, -0.04) -7.98 (-13.00, -4.00) -0.13 (-0.22, -0.07) 0.31 (0.25, 0.41) 1.00 no 

70 1 0.18 0.59 -0.08 (-0.13, -0.02) -6.20 (-10.05, -2.95) -0.08 (-0.13, -0.04) 0.38 (0.28, 0.51) 1.00 no 

140 1 0.08 0.59 -0.04 (-0.07, 0.00) -4.79 (-9.00, -1.00) -0.03 (-0.06, '-0.01) 0.43 (0.30, 0.69) 1.00 no 
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APPENDIX Q: SIMULATION RESULTS FOR N-MIXTURE MODELS 
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Table Q1. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 

data analyzed using single season N-mixture models. Mean (90% credible interval) for bias and coefficient of variation from 500 

simulation runs for each suite of parameters. Different scenarios include combinations of high, average, and low abundance paired 

with either average or high detection. R = number of survey sites, J = number of replicate visits, λ = mean abundance per site, p = 

mean detection probability; CV = coefficient of variation for total population size (Total N) and N.site = estimated number of Dusky 

Grouse per survey site. Yes/No = whether the protocol meets management requirements. 

Simulation 

Parameters 
Bias in λ Bias in p Bias in Total N Bias in N.site CV Total N 

Prob. 

CV 

Total 

N  

> 0.15 

Yes/

No 
R J λ p 

High abundance, Average detection             

100 4 0.31 0.37 0.02, (-0.10, 0.15) 0.00, (-0.12, 0.10) 1.88, (-5.03, 11.22) 0.02, (-0.05, 0.11) 0.16, (0.09, 0.27) 0.51 no 

160 4 0.31 0.37 0.02, (-0.07, 0.13) -0.01, (-0.09, 0.08) 2.16, (-6.31, 13.34) 0.01, (-0.04, 0.08) 0.12, (0.08, 0.18) 0.15 no 

170 4 0.31 0.37 0.01, (-0.07, 0.09) 0.00, (-0.08, 0.08) 1.42, (-7.40, 11.02) 0.01, (-0.04, 0.06) 0.11, (0.08, 0.16) 0.08 yes 

180 4 0.31 0.37 0.00, (-0.07, 0.10) 0.00, (-0.08, 0.07) 1.06, (-8.16, 11.67) 0.01, (-0.05, 0.06) 0.11, (0.08, 0.15) 0.07 yes 

200 4 0.31 0.37 0.01, (-0.07, 0.10) 0.00, (-0.07, 0.07) 1.26, (-8.35, 12.68) 0.01, (-0.04, 0.06) 0.10, (0.07, 0.14) 0.02 yes 

100 3 0.31 0.37 0.04, (-0.10, 0.20) 0.00, (-0.12, 0.12) 3.53, (-6.05, 17.46) 0.04, (-0.06, 0.17) 0.26, (0.14, 0.45) 0.90 no 

200 3 0.31 0.37 0.02, (-0.07, 0.14) 0.00, (-0.10, 0.10) 3.35, (-9.88, 20.19) 0.02, (-0.05, 0.10) 0.16, (0.10, 0.24) 0.50 no 

300 3 0.31 0.37 0.01, (-0.06, 0.10) 0.00, (-0.07, 0.08) 2.29, (-12.37, 21.36) 0.01, (-0.04, 0.07) 0.12, (0.09, 0.16) 0.11 no 

320 3 0.31 0.37 0.01, (-0.07, 0.09) 0.00, (-0.08, 0.08) 2.75, (-16.97, 25.09) 0.01, (-0.05, 0.08) 0.12, (0.08, 0.16) 0.11 no 

330 3 0.31 0.37 0.01, (-0.07, 0.08) 0.00, (-0.07, 0.07) 3.13, (-13.59, 23.44) 0.01, (-0.04, 0.07) 0.12, (0.08, 0.16) 0.07 yes 

340 3 0.31 0.37 0.00, (-0.06, 0.08) 0.00, (-0.08, 0.08) 2.75, (-14.55, 22.55) 0.01, (-0.04, 0.07) 0.11, (0.08, 0.15) 0.07 yes 

360 3 0.31 0.37 0.00, (-0.06, 0.09) 0.00, (-0.07, 0.07) 1.33, (-16.21, 22.25) 0.00, (-0.05, 0.06) 0.11, (0.08, 0.14) 0.03 yes 

380 3 0.31 0.37 0.01, (-0.06, 0.08) 0.00, (-0.07, 0.08) 2.01, (-17.62, 22.76) 0.01, (-0.05, 0.06) 0.10, (0.08, 0.14) 0.02 yes 

400 3 0.31 0.37 0.01, (-0.06, 0.09) 0.00, (-0.07, 0.07) 2.95, (-15.44, 27.48) 0.01, (-0.04, 0.07) 0.10, (0.08, 0.14) 0.02 yes 

100 2 0.31 0.37 0.12, (-0.11, 0.54) 0.00, (-0.18, 0.18) 11.37, (-9.03, 52.50) 0.11, (-0.09, 0.53) 0.54, (0.22, 1.03) 1.00 no 

200 2 0.31 0.37 0.04, (-0.11, 0.25) 0.01, (-0.14, 0.16) 8.57, (-17.49, 47.24) 0.04, (-0.09, 0.24) 0.31, (0.16, 0.57) 0.96 no 

300 2 0.31 0.37 0.03, (-0.09, 0.20) 0.00, (-0.13, 0.13) 9.45, (-20.66, 58.09) 0.03, (-0.07, 0.19) 0.24, (0.14, 0.40) 0.91 no 

400 2 0.31 0.37 0.02, (-0.07, 0.16) 0.00, (-0.11, 0.12) 7.60, (-25.18, 54.73) 0.02, (-0.06, 0.14) 0.20, (0.12, 0.31) 0.82 no 

500 2 0.31 0.37 0.01, (-0.07, 0.11) 0.00, (-0.10, 0.10) 5.90, (-29.56, 47.75) 0.01, (-0.06, 0.10) 0.17, (0.12, 0.26) 0.67 no 

600 2 0.31 0.37 0.00, (-0.07, 0.09) 0.01, (-0.08, 0.10) 2.89, (-36.00, 50.37) 0.00, (-0.06, 0.08) 0.15, (0.10, 0.21) 0.42 no 

700 2 0.31 0.37 0.01, (-0.07, 0.10) 0.01, (-0.08, 0.09) 4.77, (-38.69, 61.93) 0.01, (-0.06, 0.09) 0.14, (0.10, 0.19) 0.28 no 
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800 2 0.31 0.37 0.01, (-0.06, 0.09) 0.01, (-0.08, 0.09) 5.10, (-41.06, 66.28) 0.01, (-0.05, 0.08) 0.13, (0.09, 0.17) 0.15 no 

860 2 0.31 0.37 0.01, (-0.05, 0.09) 0.00, (-0.07, 0.08) 5.46, (-41.03, 64.88) 0.01, (-0.05, 0.08) 0.12, (0.09, 0.16) 0.11 no 

870 2 0.31 0.37 0.01, (-0.05, 0.09) 0.00, (-0.08, 0.08) 7.37, (-44.62, 75.69) 0.01, (-0.05, 0.09) 0.12, (0.09, 0.16) 0.13 no 

880 2 0.31 0.37 0.01, (-0.06, 0.08) 0.00, (-0.07, 0.08) 5.38, (-42.59, 59.15) 0.01, (-0.05, 0.07) 0.12, (0.09, 0.16) 0.10 yes 

890 2 0.31 0.37 0.00, (-0.06, 0.08) 0.01, (-0.08, 0.08) 4.27, (-45.13, 69.79) 0.00, (-0.05, 0.08) 0.12, (0.09, 0.16) 0.10 yes 

900 2 0.31 0.37 0.01, (-0.06, 0.08) 0.01, (-0.07, 0.09) 2.69, (-49.32, 65.74) 0.00, (-0.05, 0.07) 0.12, (0.09, 0.16) 0.08 yes 

           

Low abundance, Average detection             

100 4 0.08 0.37 0.02, (-0.03, 0.10) 0.00, (-0.17, 0.19) 1.58, (-2.01, 7.60) 0.02, (-0.02, 0.08) 0.41, (0.13, 1.03) 0.90 no 

200 4 0.08 0.37 0.01, (-0.03, 0.06) 0.00, (-0.13, 0.13) 1.31, (-3.15, 7.74) 0.01, (-0.02, 0.04) 0.21, (0.10, 0.41) 0.68 no 

300 4 0.08 0.37 0.00, (-0.03, 0.04) 0.00, (-0.10, 0.11) 0.88, (-4.64, 6.58) 0.00, (-0.02, 0.02) 0.15, (0.08, 0.26) 0.42 no 

400 4 0.08 0.37 0.00, (-0.02, 0.04) 0.00, (-0.10, 0.09) 1.34, (-4.70, 8.78) 0.00, (-0.01, 0.02) 0.13, (0.08, 0.20) 0.22 no 

480 4 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.08) 1.01, (-4.93, 7.82) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.17) 0.11 no 

490 4 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.08, 0.08) 0.81, (-5.01, 7.52) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.16) 0.08 yes 

500 4 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.08) 1.15, (-5.55, 9.20) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.17) 0.10 yes 

100 3 0.08 0.37 0.03, (-0.04, 0.16) 0.01, (-0.19, 0.22) 3.15, (-2.93, 15.56) 0.03, (-0.03, 0.16) 0.63, (0.21, 1.48) 0.99 no 

200 3 0.08 0.37 0.01, (-0.04, 0.08) 0.01, (-0.16, 0.19) 2.72, (-3.90, 14.95) 0.01, (-0.02, 0.07) 0.36, (0.13, 0.84) 0.92 no 

300 3 0.08 0.37 0.01, (-0.03, 0.06) 0.00, (-0.15, 0.14) 2.45, (-6.08, 15.59) 0.01, (-0.02, 0.05) 0.25, (0.13, 0.51) 0.85 no 

400 3 0.08 0.37 0.01, (-0.02, 0.05) 0.00, (-0.12, 0.13) 2.45, (-6.62, 15.33) 0.01, (-0.02, 0.04) 0.20, (0.11, 0.34) 0.73 no 

500 3 0.08 0.37 0.00, (-0.03, 0.04) 0.00, (-0.11, 0.12) 2.38, (-7.97, 16.00) 0.00, (-0.02, 0.03) 0.17, (0.10, 0.28) 0.62 no 

600 3 0.08 0.37 0.00, (-0.02, 0.04) 0.00, (-0.10, 0.11) 2.07, (-8.32, 16.37) 0.00, (-0.01, 0.03) 0.15, (0.10, 0.23) 0.44 no 

700 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.08, 0.09) 1.97, (-8.20, 13.22) 0.00, (-0.01, 0.02) 0.14, (0.09, 0.21) 0.29 no 

800 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.11) 1.71, (-10.78, 18.78) 0.00, (-0.01, 0.02) 0.13, (0.08, 0.19) 0.22 no 

900 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.08) 2.03, (-10.17, 16.32) 0.00, (-0.01, 0.02) 0.12, (0.08, 0.18) 0.13 no 

910 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.09) 2.24, (-10.80, 19.64) 0.00, (-0.01, 0.02) 0.12, (0.08, 0.17) 0.12 no 

920 3 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 1.46, (-10.82, 17.11) 0.00, (-0.01, 0.02) 0.12, (0.08, 0.17) 0.10 yes 

940 3 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.07, 0.09) 1.94, (-11.25, 16.90) 0.00, (-0.01, 0.02) 0.11, (0.08, 0.16) 0.08 yes 

960 3 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 2.13, (-10.50, 16.33) 0.00, (-0.01, 0.02) 0.12, (0.08, 0.16) 0.09 yes 

980 3 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 1.97, (-11.36, 17.12) 0.00, (-0.01, 0.02) 0.11, (0.08, 0.16) 0.08 yes 

1000 3 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 2.27, (-10.53, 17.82) 0.00, (-0.01, 0.02) 0.11, (0.08, 0.16) 0.07 yes 

100 2 0.08 0.37 0.06, (-0.05, 0.24) 0.04, (-0.16, 0.31) 5.56, (-3.76, 21.43) 0.06, (-0.04, 0.21) 1.33, (0.33, 2.23) 1.00 no 

200 2 0.08 0.37 0.04, (-0.04, 0.17) 0.02, (-0.18, 0.26) 7.00, (-5.71, 32.15) 0.04, (-0.03, 0.16) 0.71, (0.23, 1.52) 0.99 no 
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300 2 0.08 0.37 0.03, (-0.03, 0.12) 0.02, (-0.17, 0.21) 7.42, (-7.29, 39.62) 0.02, (-0.02, 0.13) 0.53, (0.20, 1.04) 0.99 no 

400 2 0.08 0.37 0.02, (-0.03, 0.11) 0.01, (-0.18, 0.19) 8.36, (-9.54, 43.31) 0.02, (-0.02, 0.11) 0.44, (0.19, 0.92) 0.99 no 

500 2 0.08 0.37 0.02, (-0.03, 0.08) 0.00, (-0.17, 0.16) 9.59, (-10.82, 44.49) 0.02, (-0.02, 0.09) 0.40, (0.19, 0.80) 0.99 no 

600 2 0.08 0.37 0.02, (-0.03, 0.08) 0.00, (-0.16, 0.15) 9.36, (-12.34, 46.55) 0.02, (-0.02, 0.08) 0.34, (0.17, 0.64) 0.98 no 

700 2 0.08 0.37 0.01, (-0.02, 0.07) 0.01, (-0.14, 0.16) 7.69, (-12.79, 46.84) 0.01, (-0.02, 0.07) 0.31, (0.15, 0.66) 0.95 no 

800 2 0.08 0.37 0.01, (-0.02, 0.06) 0.00, (-0.15, 0.14) 9.14, (-16.62, 48.21) 0.01, (-0.02, 0.06) 0.30, (0.15, 0.59) 0.95 no 

900 2 0.08 0.37 0.01, (-0.02, 0.05) 0.01, (-0.12, 0.15) 7.25, (-17.19, 40.63) 0.01, (-0.02, 0.05) 0.27, (0.13, 0.52) 0.91 no 

1000 2 0.08 0.37 0.01, (-0.02, 0.04) 0.00, (-0.12, 0.12) 7.82, (-18.24, 41.21) 0.01, (-0.02, 0.04) 0.24, (0.14, 0.45) 0.89 no 

1100 2 0.08 0.37 0.01, (-0.02, 0.04) 0.01, (-0.11, 0.13) 5.25, (-19.37, 41.46) 0.00, (-0.02, 0.04) 0.22, (0.13, 0.39) 0.85 no 

1200 2 0.08 0.37 0.00, (-0.02, 0.04) 0.00, (-0.11, 0.12) 6.14, (-20.92, 48.08) 0.01, (-0.02, 0.04) 0.22, (0.12, 0.38) 0.83 no 

1300 2 0.08 0.37 0.01, (-0.02, 0.04) 0.01, (-0.11, 0.12) 6.49, (-22.34, 48.53) 0.00, (-0.02, 0.04) 0.20, (0.12, 0.34) 0.74 no 

1400 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.11, 0.11) 6.12, (-21.42, 45.54) 0.00, (-0.02, 0.03) 0.19, (0.12, 0.32) 0.74 no 

1500 2 0.08 0.37 0.01, (-0.02, 0.03) 0.00, (-0.10, 0.10) 8.10, (-22.94, 50.46) 0.01, (-0.02, 0.03) 0.19, (0.12, 0.33) 0.71 no 

1600 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.10, 0.10) 7.07, (-24.16, 51.10) 0.00, (-0.02, 0.03) 0.18, (0.11, 0.27) 0.66 no 

1700 2 0.08 0.37 0.00, (-0.02, 0.03) 0.01, (-0.09, 0.10) 4.55, (-26.91, 47.20) 0.00, (-0.02, 0.03) 0.17, (0.11, 0.26) 0.55 no 

1800 2 0.08 0.37 0.00, (-0.02, 0.03) 0.01, (-0.10, 0.11) 5.79, (-28.18, 50.65) 0.00, (-0.02, 0.03) 0.16, (0.11, 0.24) 0.52 no 

1900 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.10) 6.06, (-29.78, 51.22) 0.00, (-0.02, 0.03) 0.16, (0.10, 0.23) 0.49 no 

2000 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.09, 0.10) 6.81, (-26.32, 52.48) 0.00, (-0.01, 0.03) 0.15, (0.10, 0.23) 0.43 no 

2100 2 0.08 0.37 0.00, (-0.02, 0.03) 0.00, (-0.08, 0.10) 4.50, (-32.48, 48.72) 0.00, (-0.02, 0.02) 0.15, (0.10, 0.21) 0.39 no 

2200 2 0.08 0.37 0.00, (-0.01, 0.03) 0.00, (-0.09, 0.09) 6.71, (-29.46, 55.89) 0.00, (-0.01, 0.03) 0.15, (0.10, 0.22) 0.33 no 

2300 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.09, 0.09) 4.95, (-29.89, 51.25) 0.00, (-0.01, 0.02) 0.14, (0.10, 0.20) 0.27 no 

2400 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.08, 0.09) 4.08, (-35.24, 50.71) 0.00, (-0.01, 0.02) 0.13, (0.10, 0.20) 0.23 no 

2500 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.08, 0.09) 5.56, (-35.94, 53.71) 0.00, (-0.01, 0.02) 0.14, (0.09, 0.20) 0.24 no 

2600 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.09) 4.58, (-34.24, 53.14) 0.00, (-0.01, 0.02) 0.13, (0.09, 0.19) 0.18 no 

2700 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.09) 6.38, (-34.09, 54.91) 0.00, (-0.01, 0.02) 0.13, (0.09, 0.19) 0.18 no 

2800 2 0.08 0.37 0.00, (-0.01, 0.02) 0.01, (-0.07, 0.08) 3.69, (-36.63, 57.70) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.17) 0.11 no 

2900 2 0.08 0.37 0.00, (-0.01, 0.02) 0.01, (-0.07, 0.08) 3.57, (-37.58, 51.97) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.17) 0.12 no 

2910 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.07, 0.08) 5.02, (-35.49, 55.29) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.08 yes 

2920 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.06, 0.08) 2.61, (-34.79, 51.97) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.06 yes 

2940 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.08, 0.08) 4.05, (-35.93, 60.19) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.16) 0.08 yes 

2960 2 0.08 0.37 0.00, (-0.01, 0.02) 0.00, (-0.07, 0.08) 4.75, (-36.66, 57.51) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.07 yes 

2980 2 0.08 0.37 0.00, (-0.02, 0.02) 0.01, (-0.07, 0.08) 3.26, (-36.81, 58.49) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.05 yes 
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3000 2 0.08 0.37 0.00, (-0.02, 0.02) 0.00, (-0.07, 0.08) 5.78, (-37.41, 53.92) 0.00, (-0.01, 0.02) 0.12, (0.09, 0.15) 0.07 yes 

           

Average abundance, Average detection             

100 4 0.18 0.37 0.01, (-0.07, 0.11) 0.01, (-0.12, 0.14) 1.11, (-3.95, 7.48) 0.01, (-0.04, 0.07) 0.21, (0.10, 0.42) 0.69 no 

200 4 0.18 0.37 0.01, (-0.04, 0.07) 0.00, (-0.08, 0.09) 1.36, (-4.86, 8.47) 0.01, (-0.02, 0.04) 0.13, (0.08, 0.19) 0.20 no 

220 4 0.18 0.37 0.01, (-0.05, 0.07) 0.00, (-0.09, 0.09) 1.25, (-6.32, 9.73) 0.01, (-0.03, 0.04) 0.12, (0.08, 0.18) 0.18 no 

230 4 0.18 0.37 0.01, (-0.05, 0.07) 0.00, (-0.08, 0.09) 1.28, (-5.73, 9.49) 0.01, (-0.02, 0.04) 0.11, (0.07, 0.17) 0.11 no 

240 4 0.18 0.37 0.00, (-0.05, 0.06) 0.00, (-0.09, 0.09) 0.89, (-6.76, 9.53) 0.00, (-0.03, 0.04) 0.11, (0.07, 0.17) 0.09 yes 

260 4 0.18 0.37 0.01, (-0.04, 0.06) 0.00, (-0.09, 0.08) 1.37, (-6.84, 10.57) 0.01, (-0.03, 0.04) 0.11, (0.07, 0.16) 0.08 yes 

280 4 0.18 0.37 0.00, (-0.04, 0.06) 0.00, (-0.08, 0.07) 1.33, (-5.95, 9.43) 0.00, (-0.02, 0.03) 0.10, (0.07, 0.15) 0.04 yes 

300 4 0.18 0.37 0.00, (-0.05, 0.06) 0.00, (-0.07, 0.07) 1.00, (-7.05, 9.48) 0.00, (-0.02, 0.03) 0.10, (0.07, 0.14) 0.03 yes 

100 3 0.18 0.37 0.03, (-0.08, 0.21) 0.00, (-0.17, 0.16) 3.44, (-4.89, 16.05) 0.03, (-0.05, 0.16) 0.37, (0.15, 0.82) 0.95 no 

200 3 0.18 0.37 0.02, (-0.06, 0.11) 0.00, (-0.13, 0.11) 3.41, (-7.04, 19.31) 0.02, (-0.04, 0.10) 0.21, (0.12, 0.38) 0.76 no 

300 3 0.18 0.37 0.01, (-0.04, 0.07) 0.00, (-0.11, 0.11) 2.63, (-8.97, 17.91) 0.01, (-0.03, 0.06) 0.15, (0.10, 0.24) 0.44 no 

400 3 0.18 0.37 0.01, (-0.04, 0.07) 0.00, (-0.09, 0.09) 2.39, (-10.22, 18.97) 0.01, (-0.03, 0.05) 0.13, (0.09, 0.18) 0.20 no 

460 3 0.18 0.37 0.01, (-0.04, 0.06) 0.00, (-0.09, 0.08) 2.49, (-11.72, 21.05) 0.01, (-0.03, 0.05) 0.12, (0.08, 0.16) 0.11 no 

470 3 0.18 0.37 0.00, (-0.04, 0.05) 0.00, (-0.09, 0.08) 2.17, (-13.10, 20.65) 0.00, (-0.03, 0.04) 0.12, (0.08, 0.16) 0.12 no 

480 3 0.18 0.37 0.00, (-0.04, 0.05) 0.01, (-0.07, 0.08) 1.54, (-12.38, 18.62) 0.00, (-0.03, 0.04) 0.11, (0.08, 0.16) 0.07 yes 

500 3 0.18 0.37 0.01, (-0.04, 0.06) 0.00, (-0.09, 0.08) 1.90, (-14.07, 21.18) 0.00, (-0.03, 0.04) 0.11, (0.08, 0.15) 0.07 yes 

100 2 0.18 0.37 0.09, (-0.08, 0.39) 0.02, (-0.18, 0.25) 8.78, (-6.90, 35.60) 0.09, (-0.07, 0.36) 0.69, (0.26, 1.35) 0.99 no 

200 2 0.18 0.37 0.05, (-0.07, 0.25) 0.01, (-0.18, 0.19) 9.48, (-10.33, 46.88) 0.05, (-0.05, 0.23) 0.42, (0.19, 0.75) 0.99 no 

300 2 0.18 0.37 0.03, (-0.06, 0.16) 0.00, (-0.15, 0.15) 8.66, (-13.87, 46.58) 0.03, (-0.05, 0.16) 0.32, (0.16, 0.56) 0.98 no 

400 2 0.18 0.37 0.02, (-0.05, 0.12) 0.00, (-0.14, 0.14) 7.97, (-13.87, 46.58) 0.02, (-0.04, 0.12) 0.26, (0.14, 0.42) 0.93 no 

500 2 0.18 0.37 0.01, (-0.05, 0.10) 0.00, (-0.12, 0.13) 6.41, (-21.90, 44.79) 0.01, (-0.04, 0.09) 0.22, (0.13, 0.36) 0.89 no 

600 2 0.18 0.37 0.01, (-0.04, 0.09) 0.00, (-0.11, 0.11) 7.27, (-21.72, 53.29) 0.01, (-0.04, 0.09) 0.20, (0.13, 0.31) 0.82 no 

700 2 0.18 0.37 0.01, (-0.04, 0.08) 0.01, (-0.10, 0.10) 6.19, (-24.29, 51.59) 0.01, (-0.03, 0.07) 0.18, (0.12, 0.17) 0.72 no 

800 2 0.18 0.37 0.01, (-0.04, 0.08) 0.01, (-0.10, 0.10) 8.45, (-25.50, 56.03) 0.01, (-0.03, 0.07) 0.17, (0.11, 0.24) 0.64 no 

900 2 0.18 0.37 0.01, (-0.04, 0.07) 0.01, (-0.09, 0.09) 5.08, (-31.26, 52.11) 0.01, (-0.03, 0.06) 0.15, (0.11, 0.21) 0.49 no 

1000 2 0.18 0.37 0.01, (-0.04, 0.05) 0.01, (-0.08, 0.10) 3.42, (-32.63, 49.22) 0.00, (-0.03, 0.05) 0.14, (0.10, 0.20) 0.38 no 

1100 2 0.18 0.37 0.01, (-0.03, 0.06) 0.00, (-0.08, 0.08) 6.42, (-31.86, 58.32) 0.01, (-0.03, 0.05) 0.14, (0.10, 0.19) 0.28 no 

1200 2 0.18 0.37 0.01, (-0.04, 0.05) 0.01, (-0.07, 0.09) 3.69, (-36.53, 52.85) 0.00, (-0.03, 0.04) 0.13, (0.09, 0.17) 0.16 no 

1300 2 0.18 0.37 0.01, (-0.04, 0.05) 0.01, (-0.07, 0.09) 2.23, (-38.73, 53.64) 0.00, (-0.03, 0.04) 0.12, (0.09, 0.16) 0.11 no 
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1320 2 0.18 0.37 0.00, (-0.03, 0.05) 0.00, (-0.08, 0.07) 6.10, (-35.34, 59.26) 0.00, (-0.03, 0.04) 0.13, (0.09, 0.17) 0.14 no 

1330 2 0.18 0.37 0.00, (-0.04, 0.05) 0.00, (-0.09, 0.08) 4.99, (-41.55, 65.46) 0.00, (-0.03, 0.05) 0.12, (0.09, 0.16) 0.11 no 

1340 2 0.18 0.37 0.00, (-0.03, 0.05) 0.00, (-0.08, 0.08) 4.90, (-39.91, 60.40) 0.00, (-0.03, 0.05) 0.12, (0.09, 0.16) 0.10 yes 

1360 2 0.18 0.37 0.00, (-0.03, 0.04) 0.01, (-0.06, 0.08) 1.61, (-39.08, 49.20) 0.00, (-0.03, 0.04) 0.12, (0.09, 0.15) 0.06 yes 

1380 2 0.18 0.37 0.00, (-0.04, 0.05) 0.00, (-0.08, 0.08) 3.96, (-40.50, 61.42) 0.00, (-0.03, 0.04) 0.12, (0.09, 0.16) 0.09 yes 

1400 2 0.18 0.37 0.00, (-0.03, 0.04) 0.01, (-0.07, 0.08) 2.88, (-41.57, 55.45) 0.00, (-0.03, 0.04) 0.12, (0.09, 0.16) 0.07 yes 

           

High abundance, High detection             

40 4 0.31 0.57 0.02, (-0.13, 0.20) -0.01, (-0.15, 0.12) 0.52, (-1.46, 2.65) 0.01, (-0.04, 0.07) 0.12, (0.05, 0.24) 0.21 no 

50 4 0.31 0.57 0.01, (-0.12, 0.15) -0.01, (-0.14, 0.11) 0.46, (-1.75, 2.79) 0.01, (-0.03, 0.06) 0.10, (0.05, 0.18) 0.11 no 

60 4 0.31 0.57 0.01, (-0.11, 0.14) -0.01, (-0.12, 0.10) 0.34, (-1.86, 2.51) 0.01, (-0.03, 0.04) 0.08, (0.05, 0.14) 0.04 yes 

80 4 0.31 0.57 0.01, (-0.10, 0.12) -0.01, (-0.12, 0.09) 0.54, (-2.26, 3.09) 0.01, (-0.03, 0.04) 0.07, (0.04, 0.11) 0.01 yes 

100 4 0.31 0.57 0.00, (-0.09, 0.10) -0.01, (-0.09, 0.08) 0.46, (-2.30, 3.21) 0.00, (-0.02, 0.03) 0.06, (0.04, 0.09) 0.00 yes 

80 3 0.31 0.57 0.01, (-0.09, 0.15) -0.02, (-0.15, 0.10) 1.04, (-3.19, 5.81) 0.01, (-0.04, 0.07) 0.12, (0.06, 0.21) 0.20 no 

90 3 0.31 0.57 0.01, (-0.09, 0.14) -0.01, (-0.14, 0.09) 1.17, (-2.98, 6.04) 0.01, (-0.03, 0.07) 0.11, (0.06, 0.17) 0.11 no 

100 3 0.31 0.57 0.01, (-0.09, 0.12) -0.02, (-0.13, 0.10) 1.17, (-3.50, 6.48) 0.01, (-0.03, 0.06) 0.10, (0.06, 0.16) 0.07 yes 

100 2 0.31 0.57 0.03, (-0.10, 0.20) -0.01, (-0.18, 0.14) 3.10, (-5.43, 15.37) 0.03, (-0.05, 0.15) 0.22, (0.10, 0.42) 0.71 no 

200 2 0.31 0.57 0.01, (-0.07, 0.12) -0.01, (-0.15, 0.11) 3.09, (-8.55, 18.66) 0.02, (-0.04, 0.09) 0.13, (0.08, 0.22) 0.27 no 

260 2 0.31 0.57 0.01, (-0.06, 0.10) -0.02, (-0.13, 0.09) 3.93, (-8.86, 19.64) 0.02, (-0.03, 0.08) 0.11, (0.07, 0.17) 0.11 no 

270 2 0.31 0.57 0.01, (-0.06, 0.09) -0.01, (-0.12, 0.10) 2.65, (-10.68, 19.44) 0.01, (-0.04, 0.07) 0.11, (0.07, 0.16) 0.10 yes 

280 2 0.31 0.57 0.01, (-0.06, 0.09) -0.01, (-0.12, 0.10) 2.89, (-11.67, 18.31) 0.01, (-0.04, 0.07) 0.10, (0.07, 0.16) 0.06 yes 

300 2 0.31 0.57 0.01, (-0.06, 0.08) 0.00, (-0.12, 0.11) 2.38, (-11.06, 17.92) 0.01, (-0.04, 0.06) 0.10, (0.06, 0.14) 0.05 yes 

           

Average abundance, High detection             

60 4 0.18 0.57 0.01, (-0.08, 0.12) -0.01, (-0.16, 0.11) 0.40, (-1.35, 1.93) 0.01, (-0.02, 0.03) 0.12, (0.05, 0.24) 0.19 no 

70 4 0.18 0.57 0.00, (-0.08, 0.09) -0.01, (-0.16, 0.13) 0.40, (-1.40, 2.08) 0.01, (-0.02, 0.03) 0.10, (0.04, 0.20) 0.13 no 

80 4 0.18 0.57 0.01, (-0.07, 0.10) -0.01, (-0.15, 0.11) 0.44, (-1.53, 2.09) 0.01, (-0.02, 0.03) 0.09, (0.04, 0.16) 0.08 yes 

100 4 0.18 0.57 0.00, (-0.06, 0.07) -0.01, (-0.11, 0.10) 0.38, (-1.78, 2.14) 0.00, (-0.02, 0.02) 0.08, (0.04, 0.12) 0.02 yes 

100 3 0.18 0.57 0.01, (-0.06, 0.09) -0.02, (-0.16, 0.11) 0.92, (-2.17, 4.61) 0.01, (-0.02, 0.05) 0.13, (0.06, 0.24) 0.29 no 

120 3 0.18 0.57 0.01, (-0.06, 0.08) -0.01, (-0.15, 0.11) 0.90, (-2.83, 5.00) 0.01, (-0.02, 0.04) 0.12, (0.06, 0.20) 0.20 no 

130 3 0.18 0.57 0.01, (-0.05, 0.08) -0.02, (-0.16, 0.10) 0.94, (-2.47, 5.02) 0.01, (-0.02, 0.04) 0.11, (0.06, 0.21) 0.14 no 

140 3 0.18 0.57 0.01, (-0.05, 0.07) -0.01, (-0.15, 0.11) 1.04, (-2.65, 5.62) 0.01, (-0.02, 0.04) 0.10, (0.06, 0.18) 0.10 yes 
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160 3 0.18 0.57 0.01, (-0.06, 0.07) -0.01, (-0.13, 0.10) 0.81, (-3.10, 5.26) 0.01, (-0.02, 0.03) 0.09, (0.05, 0.16) 0.06 yes 

180 3 0.18 0.57 0.00, (-0.05, 0.07) -0.01, (-0.12, 0.09) 0.75, (-3.39, 5.10) 0.00, (-0.02, 0.03) 0.09, (0.05, 0.14) 0.03 yes 

200 3 0.18 0.57 0.00, (-0.05, 0.05) 0.00, (-0.10, 0.09) 0.37, (-4.24, 4.27) 0.00, (-0.02, 0.02) 0.08, (0.05, 0.12) 0.01 yes 

100 2 0.18 0.57 0.04, (-0.06, 0.17) -0.03, (-0.25, 0.17) 3.64, (-4.01, 14.15) 0.04, (-0.04, 0.14) 0.33, (0.11, 0.74) 0.87 no 

200 2 0.18 0.57 0.02, (-0.04, 0.09) -0.02, (-0.18, 0.12) 2.95, (-5.82, 15.54) 0.01, (-0.03, 0.08) 0.18, (0.09, 0.32) 0.60 no 

300 2 0.18 0.57 0.01, (-0.04, 0.06) -0.01, (-0.14, 0.11) 2.68, (-7.26, 14.43) 0.01, (-0.02, 0.05) 0.13, (0.08, 0.20) 0.26 no 

360 2 0.18 0.57 0.01, (-0.04, 0.06) 0.00, (-0.11, 0.11) 2.08, (-8.82, 14.99) 0.01, (-0.02, 0.04) 0.11, (0.07, 0.17) 0.12 no 

370 2 0.18 0.57 0.01, (-0.04, 0.06) 0.00, (-0.13, 0.10) 2.10, (-8.79, 17.11) 0.01, (-0.02, 0.05) 0.11, (0.07, 0.17) 0.12 no 

380 2 0.18 0.57 0.01, (-0.04, 0.05) 0.00, (-0.12, 0.10) 2.16, (-8.01, 16.90) 0.01, (-0.02, 0.04) 0.11, (0.07, 0.16) 0.09 yes 

400 2 0.18 0.57 0.00, (-0.04, 0.05) -0.01, (-0.12, 0.09) 2.35, (-8.74, 15.74) 0.01, (-0.02, 0.04) 0.11, (0.07, 0.16) 0.08 yes 

           

Low abundance, High detection             

100 4 0.08 0.57 0.00, (-0.04, 0.06) -0.01, (-0.17, 0.14) 0.32, (-0.94, 1.51) 0.00, (-0.01, 0.02) 0.15, (0.05, 0.30) 0.27 no 

120 4 0.08 0.57 0.00, (-0.04, 0.05) -0.02, (-0.18, 0.13) 0.34, (-0.93, 1.65) 0.00, (-0.01, 0.01) 0.13, (0.05, 0.27) 0.20 no 

130 4 0.08 0.57 0.00, (-0.04, 0.04) -0.01, (-0.16, 0.12) 0.33, (-1.29, 1.86) 0.00, (-0.01, 0.01) 0.11, (0.05, 0.21) 0.15 no 

140 4 0.08 0.57 0.00, (-0.04, 0.05) -0.01, (-0.15, 0.13) 0.25, (-1.34, 1.57) 0.00, (-0.01, 0.01) 0.10, (0.04, 0.18) 0.10 yes 

160 4 0.08 0.57 0.00, (-0.03, 0.04) -0.01, (-0.16, 0.11) 0.36, (-1.20, 1.78) 0.00, (-0.01, 0.01) 0.09, (0.04, 0.18) 0.10 yes 

180 4 0.08 0.57 0.00, (-0.03, 0.04) -0.02, (-0.14, 0.10) 0.40, (-1.27, 1.87) 0.00, (-0.01, 0.01) 0.08, (0.04, 0.15) 0.05 yes 

200 4 0.08 0.57 0.00, (-0.03, 0.03) -0.01, (-0.14, 0.11) 0.32, (-1.51, 1.95) 0.00, (-0.01, 0.01) 0.07, (0.04, 0.14) 0.04 yes 

100 3 0.08 0.57 0.01, (-0.04, 0.06) -0.03, (-0.25, 0.16) 1.07, (-1.30, 4.70) 0.01, (-0.01, 0.05) 0.30, (0.09, 0.75) 0.71 no 

200 3 0.08 0.57 0.01, (-0.03, 0.05) -0.01, (-0.17, 0.13) 0.83, (-2.19, 3.84) 0.00, (-0.01, 0.02) 0.13, (0.06, 0.27) 0.28 no 

260 3 0.08 0.57 0.00, (-0.03, 0.04) -0.01, (-0.15, 0.11) 0.64, (-2.90, 4.18) 0.00, (-0.01, 0.02) 0.11, (0.05, 0.20) 0.14 no 

270 3 0.08 0.57 0.00, (-0.03, 0.03) -0.01, (-0.15, 0.12) 0.80, (-2.34, 4.55) 0.00, (-0.01, 0.02) 0.11, (0.05, 0.19) 0.14 no 

280 3 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.14, 0.12) 0.65, (-2.59, 3.81) 0.00, (-0.01, 0.01) 0.10, (0.05, 0.18) 0.10 yes 

300 3 0.08 0.57 0.00, (-0.02, 0.04) -0.01, (-0.12, 0.11) 0.60, (-2.60, 4.04) 0.00, (-0.01, 0.01) 0.09, (0.05, 0.16) 0.06 yes 

100 2 0.08 0.57 0.03, (-0.04, 0.17) -0.04, (-0.31, 0.20) 3.48, (-1.87, 17.18) 0.03, (-0.02, 0.17) 0.72, (0.16, 1.50) 0.96 no 

200 2 0.08 0.57 0.02, (-0.03, 0.08) -0.03, (-0.27, 0.18) 3.35, (-3.14, 16.23) 0.02, (-0.02, 0.08) 0.34, (0.11, 0.90) 0.85 no 

300 2 0.08 0.57 0.01, (-0.03, 0.05) -0.02, (-0.21, 0.14) 2.51, (-4.26, 12.63) 0.01, (-0.01, 0.04) 0.23, (0.10, 0.44) 0.74 no 

400 2 0.08 0.57 0.01, (-0.02, 0.04) -0.01, (-0.16, 0.14) 2.33, (-5.14, 13.15) 0.01, (-0.01, 0.03) 0.18, (0.09, 0.30) 0.56 no 

500 2 0.08 0.57 0.00, (-0.02, 0.03) 0.00, (-0.15, 0.12) 1.73, (-6.34, 13.81) 0.00, (-0.01, 0.03) 0.15, (0.08, 0.24) 0.38 no 

600 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.15, 0.11) 2.12, (-6.84, 14.17) 0.00, (-0.01, 0.02) 0.13, (0.08, 0.22) 0.26 no 

700 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.13, 0.10) 2.05, (-7.04, 12.92) 0.00, (-0.01, 0.02) 0.12, (0.07, 0.19) 0.18 no 
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800 2 0.08 0.57 0.00, (-0.02, 0.02) -0.01, (-0.14, 0.10) 2.55, (-8.43, 14.68) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.18) 0.12 no 

810 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.12, 0.11) 2.21, (-8.07, 14.45) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.16) 0.09 yes 

820 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.12, 0.11) 2.34, (-8.14, 15.44) 0.00, (-0.01, 0.02) 0.11, (0.06, 0.16) 0.09 yes 

840 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.12, 0.10) 2.03, (-7.51, 13.65) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.16) 0.07 yes 

860 2 0.08 0.57 0.00, (-0.02, 0.03) -0.01, (-0.13, 0.09) 2.71, (-8.18, 16.54) 0.00, (-0.01, 0.02) 0.11, (0.07, 0.16) 0.09 yes 

880 2 0.08 0.57 0.00, (-0.02, 0.02) -0.01, (-0.13, 0.09) 2.42, (-8.03, 16.64) 0.00, (-0.01, 0.02) 0.10, (0.07, 0.16) 0.07 yes 

900 2 0.08 0.57 0.00, (-0.02, 0.02) -0.01, (-0.11, 0.09) 1.90, (-8.58, 13.68) 0.00, (-0.01, 0.02) 0.10, (0.07, 0.15) 0.05 yes 
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Table R1. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 

data analyzed hierarchical distance sampling models for point-counts. Mean (90% credible interval) for bias and coefficient of 

variation from 500 simulation runs for each suite of parameters. Different scenarios include combinations of high, average, and low 

abundance paired with either average or high detection. R = number of survey sites, λ = mean abundance per site, sigma = sigma for 

calculating the half-normal detection function; CV = coefficient of variation for total population size (Total N) and N.site = estimated 

number of Dusky Grouse per survey site. Yes/No = whether the protocol meets management requirements. 
Simulation 

Parameters 

Bias in λ Bias in sigma Bias in Total N Bias in N.site CV Total N 

Prob. 

 CV 

 Total 

N  

> 0.15 

Yes

/No 
R λ sigma 

High abundance, Average detection             

100 0.31 43 -0.03, (-0.18, 0.25) 12.49, (-8.02, 31.07) -2.69 (-18.05, 23.53) -0.03, (-0.18, 0.24) 0.45 (0.31, 0.62) 1.00 no 

200 0.31 43 -0.04, (-0.16, 0.15) 9.33, (-6.36, 27.07) -5.86 (-29.45, 26.54) -0.03, (-0.15, 0.13) 0.33 (0.27, 0.41) 1.00 no 

300 0.31 43 -0.03, (-0.15, 0.12) 6.76, (-6.15, 24.38) -6.83 (-37.74, 34.02) -0.02, (-0.13, 0.11) 0.27 (0.23, 0.32) 1.00 no 

400 0.31 43 -0.03, (-0.13, 0.10) 5.06, (-4.71, 20.20) -8.67 (-51.63, 37.50) -0.02, (-0.13, 0.09) 0.24 (0.20, 0.27) 1.00 no 

500 0.31 43 -0.02, (-0.13, 0.09) 4.09, (-5.55, 18.37) -10.39 (-58.87, 46.26) -0.02, (-0.12, 0.09) 0.21 (0.18, 0.24) 1.00 no 

600 0.31 43 -0.02, (-0.11, 0.09) 3.20, (-4.32, 13.62) -9.94 (-62.57, 46.39) -0.02, (-0.10, 0.08) 0.19 (0.17, 0.22) 1.00 no 

700 0.31 43 -0.02, (-0.11, 0.07) 2.80, (-4.63, 12.15) -13.90 (-69.13, 40.18) -0.02, (-0.10, 0.06) 0.18 (0.16, 0.20) 0.99 no 

800 0.31 43 -0.02, (-0.10, 0.07) 2.41, (-4.33, 10.63) -12.23 (-76.15, 54.38) -0.02, (-0.10, 0.07) 0.16 (0.14, 0.18) 0.85 no 

900 0.31 43 -0.02, (-0.10, 0.06) 2.38, (-3.72, 11.16) -14.95 (-79.90, 56.56) -0.02, (-0.09, 0.06) 0.15 (0.14, 0.17) 0.62 no 

1000 0.31 43 -0.02, (-0.09, 0.05) 1.86, (-3.68, 9.58) -15.56 (-86.52, 58.16) -0.02, (-0.09, 0.06) 0.15 (0.13, 0.16) 0.30 no 

1080 0.31 43 -0.02, (-0.09, 0.06) 1.93, (-3.45, 9.13) -17.44 (-89.20, 60.15) -0.02, (-0.08, 0.06) 0.14 (0.13, 0.15) 0.11 no 

1090 0.31 43 -0.02, (-0.09, 0.06) 2.10, (-3.15, 8.94) -18.79 (-88.97, 51.88) -0.02, (-0.08, 0.05) 0.14 (0.13, 0.15) 0.09 yes 

1100 0.31 43 -0.02, (-0.09, 0.06) 1.96, (-3.74, 8.62) -18.82 (-88.62, 61.83) -0.02, (-0.08, 0.06) 0.14 (0.13, 0.15) 0.09 yes 

          
Low abundance, Average detection             

100 0.08 43 -0.01, (-0.08, 0.14) 14.28, (-8.12, 29.67) 1.51 (-6.81, 13.36) -0.02, (-0.07, 0.13) 

4.13 (0.48, 

32.36) 1.00 no 

200 0.08 43 0.00, (-0.06, 0.10) 14.16, (-8.22, 31.40) 0.24 (-10.30, 17.32) -0.00, (-0.05, 0.09) 0.73 (0.37, 0.97) 1.00 no 

300 0.08 43 -0.01, (-0.05, 0.06) 13.25, (-7.69, 30.94) -1.77 (-14.30, 16.92) -0.01, (-0.05, 0.06) 0.51 (0.34, 0.72) 1.00 no 

400 0.08 43 -0.01, (-0.05, 0.06) 11.85, (-8.94, 29.75) -2.12 (-18.13, 22.77) -0.01, (-0.05, 0.06) 0.45 (0.32, 0.58) 1.00 no 

500 0.08 43 -0.01, (-0.05, 0.06) 11.98, (-8.15, 32.05) -3.51 (-21.65, 25.54) -0.01, (-0.04, 0.05) 0.39 (0.29, 0.50) 1.00 no 

600 0.08 43 -0.01, (-0.05, 0.05) 10.85, (-7.17, 28.07) -4.69 (-25.74, 23.21) -0.01, (-0.04, 0.04) 0.37 (0.29, 0.47) 1.00 no 

700 0.08 43 -0.01, (-0.04, 0.04) 9.18, (-7.45, 28.12) -3.42 (-27.03, 28.64) -0.00, (-0.04, 0.04) 0.34 (0.27, 0.42) 1.00 no 

800 0.08 43 -0.01, (-0.04, 0.04) 9.77, (-5.85, 28.00) -7.49 (-30.99, 25.53) -0.01, (-0.04, 0.03) 0.33 (0.26, 0.40) 1.00 no 
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900 0.08 43 -0.01, (-0.04, 0.03) 9.45, (-5.57, 27.95) -8.05 (-36.32, 26.72) -0.01, (-0.04, 0.03) 0.31 (0.25, 0.37) 1.00 no 

1000 0.08 43 -0.01, (-0.04, 0.03) 8.49, (-5.67, 27.47) -7.70 (-36.40, 29.51) -0.01, (-0.04, 0.03) 0.29 (0.24, 0.35) 1.00 no 

1100 0.08 43 -0.01, (-0.04, 0.03) 7.01, (-5.92, 24.80) -7.10 (-38.17, 31.39) -0.01, (-0.03, 0.03) 0.28 (0.24, 0.34) 1.00 no 

1200 0.08 43 -0.01, (-0.04, 0.03) 7.12, (-6.04, 25.24) -8.17 (-42.23, 33.67) -0.01, (-0.04, 0.03) 0.27 (0.22, 0.31) 1.00 no 

1300 0.08 43 -0.01, (-0.04, 0.03) 6.33, (-5.33, 23.55) -8.84 (-47.22, 37.38) -0.01, (-0.04, 0.03) 0.26 (0.22, 0.30) 1.00 no 

1400 0.08 43 -0.01, (-0.04, 0.02) 5.88, (-5.18, 21.26) -9.01 (-47.30, 31.65) -0.01, (-0.03, 0.02) 0.25 (0.22, 0.29) 1.00 no 

1500 0.08 43 -0.01, (-0.04, 0.03) 5.93, (-5.74, 23.13) -10.50 (-49.78, 38.86) -0.01, (-0.03, 0.03) 0.24 (0.21, 0.28) 1.00 no 

1600 0.08 43 -0.01, (-0.03, 0.03) 4.62, (-5.59, 20.75) -7.98 (-51.29, 40.44) -0.00, (-0.03, 0.03) 0.23 (0.20, 0.27) 1.00 no 

1700 0.08 43 -0.01, (-0.03, 0.02) 4.70, (-4.88, 17.78) -9.67 (-53.32, 36.98) -0.01, (-0.03, 0.02) 0.22 (0.19, 0.26) 1.00 no 

1800 0.08 43 -0.01, (-0.03, 0.02) 5.36, (-4.89, 20.75) -12.04 (-55.40, 39.73) -0.01, (-0.03, 0.02) 0.22 (0.19, 0.25) 1.00 no 

1900 0.08 43 -0.01, (-0.03, 0.02) 4.19, (-4.65, 19.10) -9.98 (-55.93, 40.14) -0.01, (-0.03, 0.02) 0.21 (0.19, 0.24) 1.00 no 

2000 0.08 43 -0.01, (-0.03, 0.02) 3.86, (-4.76, 16.80) -10.47 (-58.77, 40.46) -0.01, (-0.03, 0.02) 0.21 (0.18, 0.24) 1.00 no 

2100 0.08 43 -0.01, (-0.03, 0.02) 4.34, (-4.39, 17.04) -14.75 (-61.60, 37.68) -0.01, (-0.03, 0.02) 0.20 (0.18, 0.23) 1.00 no 

2200 0.08 43 -0.01, (-0.03, 0.02) 3.81, (-4.39, 15.32) -10.29 (-60.64, 47.19) -0.00, (-0.03, 0.02) 0.20 (0.17, 0.22) 1.00 no 

2300 0.08 43 -0.01, (-0.03, 0.02) 3.97, (-3.96, 15.66) -13.67 (-66.91, 39.67) -0.01, (-0.03, 0.02) 0.19 (0.17, 0.22) 1.00 no 

2400 0.08 43 -0.01, (-0.03, 0.02) 3.57, (-4.75, 14.64) -11.85 (-64.28, 46.87) -0.00, (-0.03, 0.02) 0.19 (0.17, 0.21) 1.00 no 

2500 0.08 43 -0.01, (-0.03, 0.02) 2.97, (-4.48, 13.56) -11.60 (-67.65, 46.84) -0.00, (-0.03, 0.02) 0.18 (0.16, 0.21) 1.00 no 

2600 0.08 43 -0.01, (-0.03, 0.02) 3.48, (-3.70, 12.30) -15.97 (-66.83, 44.16) -0.01, (-0.03, 0.02) 0.18 (0.16, 0.21) 1.00 no 

2700 0.08 43 -0.00, (-0.03, 0.02) 2.58, (-5.09, 12.59) -8.92 (-65.01, 55.51) -0.00, (-0.02, 0.02) 0.18 (0.16, 0.20) 0.99 no 

2800 0.08 43 -0.01, (-0.03, 0.02) 3.19, (-4.47, 14.46) -14.18 (-70.89, 48.19) -0.01, (-0.03, 0.02) 0.17 (0.15, 0.19) 0.98 no 

2900 0.08 43 -0.01, (-0.03, 0.02) 2.82, (-4.05, 11.38) -13.56 (-70.86, 46.23) -0.00, (-0.02, 0.02) 0.17 (0.15, 0.19) 0.96 no 

3000 0.08 43 -0.01, (-0.03, 0.02) 2.59, (-3.95, 11.75) -12.63 (-77.32, 55.70) -0.00, (-0.04, 0.02) 0.17 (0.15, 0.19) 0.91 no 

3100 0.08 43 -0.01, (-0.03, 0.02) 2.67, (-4.22, 11.36) -13.99 (-74.71, 50.46) -0.00, (-0.02, 0.02) 0.16 (0.15, 0.18) 0.91 no 

3200 0.08 43 -0.01, (-0.03, 0.02) 2.42, (-3.86, 11.09) -12.78 (-72.98, 48.70) -0.00, (-0.02, 0.02) 0.16 (0.14, 0.18) 0.84 no 

3300 0.08 43 -0.01, (-0.03, 0.01) 2.75, (-3.53, 11.68) -17.05 (-76.50, 47.78) -0.01, (-0.02, 0.01) 0.16 (0.14, 0.18) 0.79 no 

3400 0.08 43 -0.01, (-0.03, 0.01) 2.29, (-3.60, 10.31) -14.90 (-75.36, 53.96) -0.00, (-0.02, 0.01) 0.16 (0.14, 0.17) 0.71 no 

3500 0.08 43 -0.01, (-0.03, 0.01) 2.55, (-4.12, 11.03) -18.15 (-78.58, 51.00) -0.01, (-0.02, 0.01) 0.15 (0.14, 0.17) 0.63 no 

3600 0.08 43 -0.01, (-0.03, 0.02) 2.33, (-3.43, 10.19) -16.56 (-80.80, 57.00) -0.00, (-0.02, 0.02) 0.15 (0.14, 0.17) 0.54 no 

3700 0.08 43 -0.00, (-0.02, 0.02) 2.14, (-3.73, 9.85) -14.32 (-81.42, 55.24) -0.00, (-0.02, 0.01) 0.15 (0.13, 0.16) 0.42 no 

3800 0.08 43 -0.01, (-0.02, 0.01) 2.10, (-3.73, 9.33) -15.58 (-79.81, 52.56) -0.00, (-0.02, 0.01) 0.15 (0.13, 0.16) 0.33 no 

3900 0.08 43 -0.01, (-0.02, 0.01) 1.94, (-4.04, 8.77) -14.41 (-80.78, 54.87) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.16) 0.25 no 

4000 0.08 43 -0.01, (-0.03, 0.01) 2.39, (-3.36, 9.73) -19.42 (-87.05, 50.46) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.16) 0.22 no 

4100 0.08 43 -0.01, (-0.02, 0.01) 1.91, (-3.33, 8.78) -16.27 (-84.71, 56.91) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.16) 0.17 no 

4200 0.08 43 -0.01, (-0.02, 0.01) 2.05, (-3.31, 9.73) -18.75 (-93.80, 54.63) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.13 no 

4220 0.08 43 -0.01, (-0.02, 0.01) 1.83, (-3.33, 8.36) -16.98 (-82.82, 57.28) 0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.11 no 

4230 0.08 43 -0.01, (-0.02, 0.02) 1.88, (-3.38, 8.84) -15.39 (-87.53, 65.58) 0.00, (-0.02, 0.02) 0.14 (0.13, 0.15) 0.08 yes 

4240 0.08 43 -0.01, (-0.02, 0.01) 2.29, (-3.36, 8.51) -21.31 (-92.40, 52.07) -0.01, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.08 yes 

4260 0.08 43 0.00, (-0.02, 0.02) 1.67, (-3.96, 8.20) -15.67 (-85.26, 62.21) 0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.10 yes 
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4280 0.08 43 -0.01, (-0.02, 0.01) 2.06, (-2.99, 9.06) -20.57 (-89.29, 51.27) 0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.07 yes 

4300 0.08 43 -0.01, (-0.02, 0.01) 1.72, (-3.70, 7.72) -15.77 (-88.18, 56.97) -0.00, (-0.02, 0.01) 0.14 (0.13, 0.15) 0.08 yes 

          
Average abundance, Average detection             

100 0.18 43 -0.00, (-0.12, 0.17) 15.49, (-7.38, 31.57) 0.13 (-11.95, 16.33) 0.00, (-0.12, 0.16) 0.57 (0.36, 0.89) 1.00 no 

200 0.18 43 -0.00, (-0.11, 0.13) 12.14, (-7.20, 29.91) -3.59 (-21.45, 26.09) -0.02, (-0.11, 0.13) 0.41 (0.30, 0.56) 1.00 no 

300 0.18 43 -0.01, (-0.09, 0.10) 9.61, (-7.65, 28.24) -3.79 (-26.80, 29.27) -0.01, (-0.09, 0.10) 0.34 (0.27, 0.43) 1.00 no 

400 0.18 43 -0.01, (-0.09, 0.09) 7.97, (-6.91, 26.01) -5.38 (-33.14, 30.68) -0.01, (-0.08, 0.08) 0.30 (0.25, 0.36) 1.00 no 

500 0.18 43 -0.02, (-0.08, 0.07) 7.65, (-5.88, 25.75) -9.19 (-43.12, 31.31) -0.02, (-0.09, 0.06) 0.27 (0.23, 0.32) 1.00 no 

600 0.18 43 -0.02, (-0.08, 0.07) 6.20, (-6.02, 23.24) -9.85 (-46.30, 36.80) -0.02, (-0.08, 0.06) 0.25 (0.22, 0.29) 1.00 no 

700 0.18 43 -0.02, (-0.08, 0.05) 5.83, (-5.39, 22.42) -11.67 (-55.37, 34.89) -0.02, (-0.08, 0.05) 0.23 (0.20, 0.27) 1.00 no 

800 0.18 43 -0.01, (-0.07, 0.05) 4.98, (-4.78, 18.80) -11.43 (-57.57, 38.71) -0.01, (-0.07, 0.05) 0.22 (0.19, 0.25) 1.00 no 

900 0.18 43 -0.01, (-0.07, 0.05) 4.13, (-4.87, 17.00) -11.08 (-66.05, 43.72) -0.01, (-0.07, 0.05) 0.20 (0.18, 0.23) 1.00 no 

1000 0.18 43 -0.01, (-0.06, 0.05) 3.60, (-4.64, 14.11) -11.68 (-62.54, 44.27) -0.01, (-0.06, 0.04) 0.19 (0.17, 0.22) 1.00 no 

1100 0.18 43 -0.01, (-0.06, 0.04) 3.30, (-3.83, 13.09) -13.53 (-67.11, 40.76) -0.01, (-0.06, 0.04) 0.18 (0.16, 0.21) 1.00 no 

1200 0.18 43 -0.01, (-0.06, 0.05) 3.03, (-4.29, 12.80) -12.82 (-66.73, 51.98) -0.01, (-0.06, 0.04) 0.17 (0.15, 0.20) 0.98 no 

1300 0.18 43 -0.01, (-0.06, 0.04) 3.07, (-3.36, 11.84) -17.82 (-76.43, 44.09) -0.01, (-0.06, 0.03) 0.17 (0.15, 0.19) 0.95 no 

1400 0.18 43 -0.01, (-0.06, 0.05) 2.50, (-3.88, 10.64) -15.13 (-74.78, 57.71) -0.01, (-0.05, 0.04) 0.16 (0.14, 0.18) 0.84 no 

1500 0.18 43 -0.01, (-0.05, 0.04) 2.21, (-3.47, 8.91) -14.60 (-75.93, 54.73) -0.01, (-0.05, 0.04) 0.15 (0.14, 0.17) 0.67 no 

1600 0.18 43 -0.01, (-0.05, 0.04) 2.18, (-3.71, 9.73) -16.56 (-83.86, 54.38) -0.01, (-0.05, 0.03) 0.15 (0.14, 0.17) 0.46 no 

1700 0.18 43 -0.01, (-0.05, 0.04) 2.32, (-3.26, 9.01) -18.61 (-84.83, 56.63) -0.01, (-0.05, 0.03) 0.14 (0.13, 0.16) 0.28 no 

1800 0.18 43 -0.01, (-0.05, 0.03) 2.03, (-3.37, 8.46) -18.09 (-92.63, 56.68) -0.01, (-0.05, 0.03) 0.14 (0.13, 0.16) 0.13 no 

1860 0.18 43 -0.01, (-0.05, 0.04) 1.82, (-3.30, 8.48) -17.80 (-90.37, 60.18) -0.01, (-0.05, 0.03) 0.14 (0.13, 0.15) 0.11 no 

1870 0.18 43 -0.01, (-0.05, 0.04) 1.99, (-3.09, 8.08) -17.12 (-83.53, 63.25) -0.01, (-0.04, 0.03) 0.14 (0.13, 0.15) 0.06 yes 

1880 0.18 43 -0.01, (-0.05, 0.03) 1.85, (-3.38, 8.26) -17.15 (-86.41, 52.00) -0.01, (-0.05, 0.03) 0.14 (0.13, 0.15) 0.06 yes 

1900 0.18 43 -0.01, (-0.05, 0.04) 1.86, (-3.59, 7.59) -18.32 (-85.32, 60.60) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.15) 0.06 yes 

          
High abundance, High detection               

100 0.31 58 -0.02, (-0.14, 0.14) 10.09, (-8.59, 22.55) -1.09 (-11.26, 12.84) -0.01, (-0.11, 0.13) 0.31 (0.21, 0.42) 1.00 no 

200 0.31 58 -0.02, (-0.11, 0.12) 9.78, (-7.40, 24.12) -3.68 (-19.30, 21.72) -0.02, (-0.10, 0.11) 0.24 (0.16, 0.30) 0.97 no 

300 0.31 58 -0.02, (-0.11, 0.11) 8.14, (-8.13, 23.82) -4.21 (-27.23, 30.31) -0.01, (-0.09, 0.10) 0.21 (0.14, 0.25) 0.93 no 

400 0.31 58 -0.02, (-0.11, 0.09) 7.40, (-7.80, 23.03) -5.78 (-34.83, 35.01) -0.01, (-0.09, 0.09) 0.18 (0.14, 0.22) 0.90 no 

500 0.31 58 -0.02, (-0.09, 0.08) 6.68, (-6.91, 21.36) -7.48 (-39.28, 37.20) -0.01, (-0.08, 0.07) 0.17 (0.13, 0.19) 0.87 no 

600 0.31 58 -0.02, (-0.10, 0.06) 6.90, (-7.22, 22.48) -11.47 (-51.76, 38.69) -0.02, (-0.09, 0.06) 0.16 (0.12, 0.18) 0.75 no 

700 0.31 58 -0.02, (-0.09, 0.06) 6.03, (-6.39, 19.76) -12.12 (-54.45, 42.24) -0.02, (-0.08, 0.06) 0.15 (0.13, 0.16) 0.41 no 

780 0.31 58 -0.02, (-0.09, 0.06) 6.15, (-6.42, 21.11) -14.02 (-61.94, 47.12) -0.02, (-0.08, 0.06) 0.14 (0.12, 0.15) 0.13 no 

790 0.31 58 -0.02, (-0.08, 0.06) 5.72, (-5.60, 18.78) -13.11 (-58.29, 40.61) -0.02, (-0.07, 0.05) 0.14 (0.12, 0.15) 0.11 no 

800 0.31 58 -0.02, (-0.09, 0.05) 5.90, (-5.70, 20.32) -15.31 (-63.06, 38.67) -0.02, (-0.08, 0.05) 0.14 (0.12, 0.15) 0.07 yes 
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Average abundance, High detection             

100 0.18 58 0.00, (-0.10, 0.15) 7.71, (-13.26, 21.42) 0.83 (-7.59, 13.95) 0.01, (-0.08, 0.14) 0.42 (0.26, 0.62) 1.00 no 

200 0.18 58 -0.01, (-0.08, 0.09) 10.25, (-8.05, 22.96) -2.08 (-13.86, 14.53) -0.01, (-0.07, 0.07) 0.29 (0.20, 0.40) 1.00 no 

300 0.18 58 -0.01, (-0.07, 0.09) 9.23, (-10.02, 24.04) -2.12 (-18.90, 23.19) -0.01, (-0.06, 0.08) 0.25 (0.17, 0.32) 0.98 no 

400 0.18 58 -0.01, (-0.06, 0.08) 8.15, (-9.92, 23.51) -2.03 (-23.80, 28.60) -0.01, (-0.06, 0.07) 0.23 (0.16, 0.28) 0.97 no 

500 0.18 58 -0.01, (-0.06, 0.06) 7.94, (-7.61, 22.71) -4.11 (-27.47, 27.83) -0.01, (-0.05, 0.06) 0.21 (0.15, 0.25) 0.95 no 

600 0.18 58 -0.01, (-0.06, 0.06) 7.92, (-9.48, 22.36) -6.11 (-33.32, 34.50) -0.01, (-0.06, 0.06) 0.19 (0.14, 0.23) 0.93 no 

700 0.18 58 -0.01, (-0.06, 0.06) 7.28, (-7.67, 23.09) -6.49 (-35.11, 34.33) -0.01, (-0.05, 0.05) 0.18 (0.13, 0.21) 0.89 no 

800 0.18 58 -0.01, (-0.06, 0.06) 7.65, (-9.07, 23.18) -7.84 (-42.33, 39.52) -0.01, (-0.05, 0.05) 0.17 (0.13, 0.20) 0.83 no 

900 0.18 58 -0.01, (-0.05, 0.05) 6.39, (-8.22, 22.16) -7.78 (-43.56, 44.66) -0.01, (-0.05, 0.05) 0.16 (0.13, 0.19) 0.85 no 

1000 0.18 58 -0.01, (-0.05, 0.04) 6.83, (-6.72, 21.75) -10.79 (-49.12, 38.50) -0.01, (-0.05, 0.04) 0.16 (0.13, 0.18) 0.75 no 

1100 0.18 58 -0.01, (-0.05, 0.05) 6.13, (-7.44, 20.08) -10.78 (-49.51, 43.62) -0.01, (-0.05, 0.04) 0.15 (0.13, 0.17) 0.61 no 

1200 0.18 58 -0.01, (-0.05, 0.04) 6.50, (-5.82, 20.76) -12.26 (-53.03, 37.08) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.16) 0.36 no 

1300 0.18 58 -0.01, (-0.05, 0.04) 5.12, (-6.20, 19.93) -10.41 (-61.06, 45.39) -0.01, (-0.05, 0.03) 0.14 (0.12, 0.16) 0.17 no 

1340 0.18 58 -0.01, (-0.05, 0.03) 4.95, (-6.75, 18.81) -10.71 (-57.01, 38.66) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.15) 0.11 no 

1350 0.18 58 -0.01, (-0.05, 0.04) 5.38, (-6.36, 19.01) -12.58 (-58.27, 40.85) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.15) 0.12 no 

1360 0.18 58 -0.01, (-0.05, 0.04) 5.05, (-6.55, 19.75) -11.90 (-63.80, 44.26) -0.01, (-0.05, 0.03) 0.14 (0.12, 0.15) 0.08 yes 

1380 0.18 58 -0.01, (-0.05, 0.03) 5.15, (-6.16, 19.62) -13.08 (-61.06, 41.45) -0.01, (-0.04, 0.03) 0.14 (0.12, 0.15) 0.07 yes 

1400 0.18 58 -0.01, (-0.05, 0.04) 4.36, (-7.56, 18.45) -9.17 (-58.23, 50.97) -0.01, (-0.04, 0.04) 0.14 (0.12, 0.15) 0.06 yes 

          
Low abundance, high detection               

100 0.08 58 0.02, (-0.05, 0.13) 5.48, (-20.85, 19.54) 2.59 (-4.04, 12.89) 0.03, (-0.04, 0.13) 1.21 (0.36, 1.49) 1.00 no 

200 0.08 58 0.00, (-0.04, 0.07) 7.98, (-13.24, 21.30) 0.72 (-7.48, 13.90) 0.00, (-0.04, 0.07) 0.58 (0.27, 0.67) 1.00 no 

300 0.08 58 0.00, (-0.04, 0.06) 8.30, (-11.25, 21.53) 0.71 (-9.00, 15.79) 0.00, (-0.03, 0.05) 0.36 (0.23, 0.52) 1.00 no 

400 0.08 58 0.00, (-0.04, 0.05) 8.19, (-11.23, 22.25) 0.00 (-11.74, 17.47) 0.00, (-0.03, 0.04) 0.32 (0.21, 0.44) 1.00 no 

500 0.08 58 0.00, (-0.03, 0.04) 8.66, (-10.65, 22.78) -0.33 (-11.98, 19.26) 0.00, (-0.02, 0.04) 0.29 (0.20, 0.39) 1.00 no 

600 0.08 58 0.00, (-0.03, 0.03) 9.75, (-8.83, 23.85) -2.22 (-15.78, 19.92) 0.00, (-0.03, 0.03) 0.26 (0.17, 0.34) 0.99 no 

700 0.08 58 -0.01, (-0.03, 0.03) 9.31, (-8.07, 23.65) -2.32 (-16.86, 18.75) 0.00, (-0.02, 0.03) 0.25 (0.17, 0.32) 0.99 no 

800 0.08 58 0.00, (-0.03, 0.03) 8.95, (-7.86, 23.35) -2.93 (-20.13, 21.50) 0.00, (-0.03, 0.03) 0.24 (0.16, 0.30) 0.97 no 

900 0.08 58 0.00, (-0.03, 0.03) 8.83, (-7.93, 24.28) -3.17 (-23.30, 23.45) 0.00, (-0.03, 0.03) 0.23 (0.15, 0.28) 0.95 no 

1000 0.08 58 -0.01, (-0.03, 0.02) 9.43, (-7.93, 23.04) -5.59 (-25.15, 25.45) -0.01, (-0.03, 0.03) 0.22 (0.15, 0.27) 0.95 no 

1100 0.08 58 -0.01, (-0.03, 0.03) 8.64, (-8.63, 24.51) -4.62 (-26.64, 23.74) 0.00, (-0.02, 0.02) 0.21 (0.14, 0.25) 0.93 no 

1200 0.08 58 0.00, (-0.03, 0.03) 7.57, (-9.11, 22.10) -4.06 (-27.77, 28.33) 0.00, (-0.02, 0.02) 0.20 (0.15, 0.25) 0.95 no 

1300 0.08 58 0.00, (-0.03, 0.02) 7.59, (-8.74, 23.67) -4.74 (-30.13, 28.41) 0.00, (-0.02, 0.02) 0.20 (0.14, 0.23) 0.92 no 

1400 0.08 58 -0.01, (-0.03, 0.02) 7.48, (-8.38, 22.72) -5.41 (-30.14, 29.74) 0.00, (-0.02, 0.02) 0.19 (0.14, 0.23) 0.93 no 

1500 0.08 58 -0.01, (-0.03, 0.02) 7.60, (-7.38, 21.62) -6.25 (-32.28, 27.84) 0.00, (-0.02, 0.02) 0.19 (0.14, 0.22) 0.92 no 

1600 0.08 58 -0.01, (-0.03, 0.02) 7.30, (-8.74, 23.07) -5.39 (-35.20, 37.24) 0.00, (-0.02, 0.02) 0.18 (0.14, 0.21) 0.91 no 
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1700 0.08 58 -0.01, (-0.03, 0.02) 8.12, (-6.56, 23.34) -9.18 (-38.67, 30.63) -0.01, (-0.02, 0.02) 0.18 (0.13, 0.21) 0.86 no 

1800 0.08 58 -0.01, (-0.03, 0.02) 7.10, (-7.04, 21.88) -7.74 (-37.97, 32.14) 0.00, (-0.02, 0.02) 0.17 (0.14, 0.20) 0.89 no 

1900 0.08 58 -0.01, (-0.03, 0.02) 7.06, (-7.84, 22.71) -7.80 (-42.93, 36.47) 0.00, (-0.02, 0.02) 0.17 (0.13, 0.19) 0.84 no 

2000 0.08 58 -0.01, (-0.03, 0.02) 7.16, (-7.82, 21.61) -8.67 (-42.97, 35.06) 0.00, (-0.02, 0.02) 0.17 (0.13, 0.19) 0.83 no 

2100 0.08 58 -0.01, (-0.03, 0.02) 7.29, (-6.62, 23.00) -10.84 (-45.52, 35.68) -0.01, (-0.02, 0.02) 0.16 (0.12, 0.19) 0.81 no 

2200 0.08 58 -0.01, (-0.02, 0.02) 6.36, (-8.34, 22.27) -8.32 (-46.97, 38.45) 0.00, (-0.02, 0.02) 0.16 (0.13, 0.18) 0.80 no 

2300 0.08 58 -0.01, (-0.03, 0.02) 7.07, (-6.73, 23.50) -11.29 (-51.19, 40.76) 0.00, (-0.02, 0.02) 0.16 (0.12, 0.18) 0.75 no 

2400 0.08 58 -0.01, (-0.02, 0.02) 5.93, (-7.91, 20.79) -8.74 (-51.42, 42.91) 0.00, (-0.02, 0.02) 0.15 (0.13, 0.17) 0.72 no 

2500 0.08 58 -0.01, (-0.03, 0.02) 6.02, (-6.98, 21.08) -10.76 (-51.31, 42.65) 0.00, (-0.02, 0.02) 0.15 (0.13, 0.17) 0.65 no 

2600 0.08 58 -0.01, (-0.02, 0.02) 6.11, (-6.88, 20.47) -12.31 (-53.13, 36.12) 0.00, (-0.02, 0.01) 0.15 (0.13, 0.17) 0.56 no 

2700 0.08 58 -0.01, (-0.02, 0.01) 6.55, (-6.84, 22.10) -13.41 (-56.32, 40.97) 0.00, (-0.02, 0.02) 0.15 (0.12, 0.16) 0.45 no 

2800 0.08 58 -0.01, (-0.02, 0.02) 5.48, (-6.41, 18.93) -10.59 (-52.51, 43.38) 0.00, (-0.02, 0.02) 0.15 (0.13, 0.16) 0.32 no 

2900 0.08 58 -0.01, (-0.02, 0.01) 5.76, (-6.24, 21.57) -12.78 (-58.46, 41.17) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.16) 0.23 no 

3000 0.08 58 -0.01, (-0.02, 0.02) 5.47, (-6.33, 18.87) -12.03 (-57.94, 42.01) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.16) 0.20 no 

3100 0.08 58 -0.01, (-0.02, 0.01) 5.73, (-4.96, 19.82) -14.70 (-62.94, 39.28) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.15) 0.11 no 

3110 0.08 58 0.00, (-0.02, 0.01) 5.16, (-5.92, 19.60) -11.62 (-60.84, 43.04) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.15) 0.09 yes 

3120 0.08 58 -0.01, (-0.02, 0.01) 5.25, (-6.20, 21.17) -11.99 (-61.64, 39.36) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.15) 0.10 yes 

3140 0.08 58 -0.01, (-0.02, 0.01) 5.28, (-6.70, 19.55) -13.07 (-59.33, 46.66) 0.00, (-0.02, 0.01) 0.14 (0.12, 0.15) 0.08 yes 

3160 0.08 58 -0.01, (-0.02, 0.01) 5.08, (-6.43, 20.59) -11.48 (-61.55, 50.74) 0.00, (-0.02, 0.02) 0.14 (0.12, 0.15) 0.08 yes 

3180 0.08 58 -0.01, (-0.02, 0.01) 5.39, (-6.59, 20.17) -12.14 (-58.57, 48.50) 0.00, (-0.02, 0.02) 0.14 (0.12, 0.15) 0.07 yes 

3200 0.08 58 -0.01, (-0.02, 0.02) 5.33, (-6.77, 20.70) -13.21 (-65.15, 49.01) 0.00, (-0.02, 0.02) 0.14 (0.12, 0.15) 0.07 yes 
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Table S1. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 

data analyzed hierarchical distance sampling models for line-transects with a length of 2,681 m (average transect length from 2020 

and 2021 surveys). Mean (90% credible interval) for bias and coefficient of variation from 500 simulation runs for each suite of 

parameters. Different scenarios include combinations of high, average, and low abundance paired with either average or high 

detection. R = number of survey sites, λ = mean abundance per site, sigma = sigma for calculating the half-normal detection function; 

CV = coefficient of variation for total population size (Total N) and N.site = estimated number of Dusky Grouse per survey site. 

Yes/No = whether the protocol meets management requirements. 
Simulation 

Parameters 
Bias in λ Bias in sigma Bias in Total N Bias in N.site CV Total N 

Prob. 

 CV 

 Total N  

> 0.15 

Yes

/No 
R λ sigma 

High abundance, Average detection             

20 5.54 42 -0.09 (-1.65, 1.58) 3.59 (-6.06, 17.96) -2.54 (-29.47, 28.67) -0.13 (-1.47, 1.43) 0.14 (0.13, 0.16) 0.27 no 

25 5.54 42 -0.08 (-1.48, 1.26) 2.90 (-5.32, 13.94) -2.34 (-31.01, 28.10) -0.09 (-1.24, 1.12) 0.13 (0.12, 0.14) 0.01 yes 

30 5.54 42 -0.05 (-1.27, 1.28) 1.43 (-5.66, 9.53) -1.79 (-31.05, 28.58) -0.06 (-1.03, 0.95) 0.12 (0.11, 0.13) 0.00 yes 

40 5.54 42 -0.06 (-1.16, 1.14) 1.25 (-5.16, 8.51) -2.89 (-36.80, 37.46) -0.07 (-0.92, 0.94) 0.10 (0.09, 0.11) 0.00 yes 

60 5.54 42 -0.08 (-0.85, 0.80) 1.16 (-3.70, 6.31) -4.37 (-45.46, 42.31) -0.07 (-0.76, 0.71) 0.08 (0.08, 0.09) 0.00 yes 

80 5.54 42 -0.04 (-0.77, 0.73) 0.65 (-3.53, 5.19) -2.71 (-57.15, 49.50) -0.03 (-0.71, 0.62) 0.07 (0.07, 0.07) 0.00 yes 

100 5.54 42 -0.01 (-0.66, 0.67) 0.55 (-2.85, 4.62) -1.94 (-55.14, 59.02) -0.02 (-0.55, 0.59) 0.06 (0.06, 0.07) 0.00 yes 

          
Average abundance, Average detection             

20 3.22 42 -0.10 (-1.15, 1.24) 6.16 (-6.66, 23.52) -2.16 (-19.42, 18.89) -0.11 (-0.97, 0.94) 0.19 (0.16, 0.22) 0.99 no 

30 3.22 42 -0.11 (-1.01, 0.98) 4.26 (-6.44, 19.45) -2.64 (-25.97, 21.85) -0.09 (-0.87, 0.73) 0.16 (0.14, 0.18) 0.71 no 

35 3.22 42 -0.07 (-0.86, 0.85) 3.29 (-5.27, 15.88) -2.67 (-26.82, 23.36) -0.08 (-0.77, 0.67) 0.14 (0.13, 0.16) 0.29 no 

40 3.22 42 -0.06 (-0.84, 0.81) 3.23 (-5.31, 15.81) -3.31 (-30.55, 22.27) -0.08 (-0.76, 0.56) 0.13 (0.12, 0.15) 0.04 yes 

60 3.22 42 -0.04 (-0.72, 0.65) 1.63 (-4.63, 9.25) -2.69 (-35.61, 33.99) -0.04 (-0.59, 0.57) 0.11 (0.10, 0.12) 0.00 yes 

80 3.22 42 -0.05 (-0.62, 0.53) 1.45 (-4.31, 8.60) -3.22 (-40.71, 38.56) -0.04 (-0.51, 0.48) 0.09 (0.09, 0.10) 0.00 yes 

100 3.22 42 -0.03 (-0.51, 0.46) 1.01 (-3.88, 6.17) -3.13 (-42.30, 40.99) -0.03 (-0.42, 0.41) 0.08 (0.08, 0.09) 0.00 yes 

          
Low abundance, Average detection             

100 1.43 42 -0.01 (-0.35, 0.34) 2.60 (-5.83, 12.97) -1.81 (-32.22, 30.12) -0.02 (-0.32, 0.30) 0.13 (0.12, 0.14) 0.01 yes 

80 1.43 42 -0.03 (-0.41, 0.39) 3.41 (-6.44, 16.49) -2.76 (-30.47, 24.64) -0.03 (-0.38, 0.31) 0.14 (0.13, 0.16) 0.24 no 

90 1.43 42 -0.03 (-0.39, 0.35) 2.58 (-5.32, 14.65) -2.58 (-29.13, 23.93) -0.03 (-0.32, 0.27) 0.13 (0.12, 0.15) 0.06 yes 

85 1.43 42 -0.03 (-0.36, 0.38) 2.92 (-5.81, 13.87) -2.62 (-26.72, 23.79) -0.03 (-0.31, 0.28) 0.14 (0.12, 0.15) 0.11 no 

          
High abundance, High detection             
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10 5.54 51 -0.25 (-1.97, 1.78) 9.19 (-8.45, 26.34) -2.64 (-15.51, 14.34) -0.26 (-1.55, 1.43) 0.18 (0.13, 0.22) 0.84 no 

15 5.54 51 -0.10 (-1.56, 1.83) 6.81 (-9.23, 23.51) -1.79 (-19.00, 21.42) -0.12 (-1.27, 1.43) 0.15 (0.12, 0.17) 0.45 no 

20 5.54 51 -0.14 (-1.40, 1.45) 5.67 (-7.24, 21.52) -3.04 (-24.75, 20.15) -0.15 (-1.24, 1.01) 0.13 (0.11, 0.15) 0.04 yes 

40 5.54 51 -0.13 (-1.23, 0.95) 3.45 (-5.73, 15.85) -4.63 (-39.53, 29.92) -0.12 (-0.99, 0.75) 0.09 (0.09, 0.10) 0.00 yes 

60 5.54 51 -0.07 (-0.85, 0.81) 1.93 (-5.28, 10.23) -4.25 (-48.17, 41.12) -0.07 (-0.80, 0.69) 0.08 (0.07, 0.08) 0.00 yes 

80 5.54 51 -0.05 (-0.71, 0.65) 1.03 (-4.26, 7.88) -3.45 (-47.22, 37.54) -0.04 (-0.59, 0.47) 0.07 (0.06, 0.07) 0.00 yes 

100 5.54 51 -0.01 (-0.65, 0.71) 0.96 (-4.28, 6.81) -2.32 (-52.68, 47.03) -0.02 (-0.53, 0.47) 0.06 (0.06, 0.06) 0.00 yes 

          
Average abundance, High detection             

20 3.22 51 -0.14 (-1.08, 1.04) 9.42 (-8.57, 26.65) -3.06 (-18.03, 16.03) -0.15 (-0.90, 0.80) 0.16 (0.12, 0.20) 0.73 no 

30 3.22 51 -0.15 (-0.93, 0.72) 7.63 (-5.95, 24.20) -4.65 (-22.60, 18.41) -0.15 (-0.75, 0.61) 0.14 (0.11, 0.16) 0.20 no 

35 3.22 51 -0.12 (-0.92, 0.79) 6.28 (-6.85, 23.29) -3.94 (-24.98, 19.96) -0.11 (-0.71, 0.57) 0.13 (0.11, 0.15) 0.02 yes 

40 3.22 51 -0.10 (-0.85, 0.73) 5.18 (-7.40, 21.19) -4.05 (-27.98, 23.58) -0.10 (-0.70, 0.59) 0.12 (0.11, 0.14) 0.00 yes 

60 3.22 51 -0.07 (-0.76, 0.61) 3.47 (-6.39, 16.87) -3.40 (-35.24, 28.49) -0.06 (-0.59, 0.47) 0.10 (0.0, 0.11) 0.00 yes 

80 3.22 51 -0.06 (-0.62, 0.52) 2.52 (-5.84, 13.79) -4.22 (-39.76, 32.49) -0.05 (-0.50, 0.41) 0.09 (0.08, 0.09) 0.00 yes 

100 3.22 51 -0.04 (-0.56, 0.46) 2.12 (-5.06, 11.52) -4.91 (-45.84, 37.84) -0.05 (-0.46, 0.38) 0.08 (0.07, 0.08) 0.00 yes 

          
Low abundance, High detection             

60 1.43 51 -0.07 (-0.44, 0.42) 7.36 (-7.83, 24.88) -3.36 (-21.23, 19.94) -0.06 (-0.35, 0.33) 0.15 (0.12, 0.17) 0.45 no 

65 1.43 51 -0.03 (-0.41, 0.42) 6.42 (-7.71, 22.17) -1.66 (-20.76, 21.16) -0.03 (-0.32, 0.33) 0.14 (0.12, 0.16) 0.25 no 

70 1.43 51 -0.06 (-0.39, 0.32) 7.66 (-7.27, 24.01) -4.18 (-21.92, 18.97) -0.06 (-0.34, 0.27) 0.14 (0.11, 0.16) 0.10 yes 

80 1.43 51 -0.04 (-0.37, 0.40) 6.17 (-7.75, 20.89) -3.14 (-23.48, 23.70) -0.04 (-0.29, 0.30) 0.13 (0.11, 0.14) 0.01 yes 

100 1.43 51 -0.03 (-0.36, 0.32) 4.63 (-7.44, 20.77) -3.65 (-30.02, 27.41) -0.04 (-0.30, 0.27) 0.12 (0.10, 0.13) 0.00 yes 

Table S2. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 

data analyzed hierarchical distance sampling models for line-transects with a length of 5,000m. Mean (90% credible interval) for bias 

and coefficient of variation from 500 simulation runs for each suite of parameters. Different scenarios include combinations of high, 

average, and low abundance paired with either average or high detection. R = number of survey sites, λ = mean abundance per site, 

sigma = sigma for calculating the half-normal detection function; CV = coefficient of variation for total population size (Total N) and 

N.site = estimated number of Dusky Grouse per survey site. Yes/No = whether the protocol meets management requirements. 
Simulation 

Parameters 
Bias in λ Bias in sigma Bias in Total N Bias in N.site CV Total N 

Prob. 

CV 

Total N 

 > 0.15 

Yes

/No 
R λ sigma 

High abundance, Average detection             

10 10.33 42 -0.36 (-3.42, 2.95) 4.59 (-5.73, 19.76) -3.08 (-29.41, 24.03) -0.31 (-2.94, 2.40) 0.15 (0.13, 0.17) 0.47 no 
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15 10.33 42 -0.27 (-2.54, 2.14) 2.58 (-4.90, 11.82) -3.47 (-33.21, 27.46) -0.23 (-2.21, 1.83) 0.12 (0.11, 0.14) 0.00 yes 

20 10.33 42 -0.13 (-2.33, 2.03) 1.78 (-5.26, 9.68) -2.99 (-40.46, 37.18) -0.15 (-2.02, 1.86) 0.10 (0.10, 0.12) 0.00 yes 

40 10.33 42 -0.05 (-1.51, 1.48) 0.74 (-3.61, 5.70) -1.29 (-51.31, 44.90) -0.03 (-1.28, 1.12) 0.07 (0.07, 0.08) 0.00 yes 

60 10.33 42 -0.09 (-1.27, 1.20) 0.67 (-2.43, 4.70) -5.92 (-69.32, 56.28) -0.10 (-1.16, 0.94) 0.06 (0.06, 0.06) 0.00 yes 

80 10.33 42 -0.04 (-1.05, 1.04) 0.47 (-2.39, 3.98) -4.56 (-73.02, 62.47) -0.06 (-0.91, 0.78) 0.05 (0.05, 0.05) 0.00 yes 

100 10.33 42 -0.08 (-1.01, 0.99) 0.40 (-2.34, 3.01) -8.19 (-84.39, 69.41) -0.08 (-0.84, 0.69) 0.05 (0.04, 0.05) 0.00 yes 

          

Average abundance, Average detection             

20 6 42 -0.10 (-1.72, 1.56) 3.06 (-5.41, 15.58) -2.51 (-28.58, 25.43) -0.13 (-1.43, 1.27) 0.14 (0.12, 0.16) 0.14 no 

25 6 42 -0.08 (-1.53, 1.46) 2.62 (-5.81, 12.23) -2.01 (-30.41, 29.61) -0.08 (-1.22, 1.18) 0.12 (0.11, 0.14) 0.00 yes 

30 6 42 -0.05 (-1.42, 1.33) 2.00 (-4.49, 11.27) -2.08 (-36.65, 30.71) -0.07 (-1.22, 1.02) 0.11 (0.10, 0.12) 0.00 yes 

40 6 42 -0.04 (-1.04, 1.13) 1.19 (-4.56, 7.65) -1.72 (-37.93, 34.09) -0.04 (-0.95, 0.85) 0.10 (0.09, 0.10) 0.00 yes 

60 6 42 -0.05 (-1.08, 0.78) 0.99 (-3.25, 6.33) -3.26 (-51.41, 43.90) -0.05 (-0.86, 0.73) 0.08 (0.07, 0.08) 0.00 yes 

80 6 42 -0.02 (-0.79, 0.80) 0.51 (-3.34, 4.95) -0.82 (-51.25, 48.55) -0.01 (-0.64, 0.61) 0.07 (0.06, 0.07) 0.00 yes 

100 6 42 -0.04 (-0.79, 0.70) 0.54 (-2.81, 4.36) -4.23 (-62.13, 52.88) -0.04 (-0.62, 0.53) 0.06 (0.06, 0.06) 0.00 yes 

          

Low abundance, Average detection             

40 2.67 42 -0.08 (-0.84, 0.73) 3.86 (-5.99, 16.94) -3.09 (-27.32, 23.42) -0.08 (-0.68, 0.59) 0.15 (0.13, 0.17) 0.42 no 

45 2.67 42 -0.08 (-0.76, 0.67) 3.68 (-4.89, 15.58) -3.60 (-28.97, 25.27) -0.08 (-0.64, 0.56) 0.14 (0.12, 0.16) 0.14 no 

50 2.67 42 -0.04 (-0.77, 0.68) 2.52 (-5.73, 14.62) -2.34 (-31.02, 29.58) -0.05 (-0.62, 0.59) 0.13 (0.12, 0.15) 0.05 yes 

60 2.67 42 -0.06 (-0.65, 0.60) 2.17 (-5.55, 12.34) -3.22 (-35.98, 29.53) -0.05 (-0.60, 0.49) 0.12 (0.11, 0.13) 0.00 yes 

80 2.67 42 -0.05 (-0.59, 0.55) 1.95 (-4.65, 9.91) -3.37 (-37.17, 35.92) -0.04 (-0.46, 0.45) 0.10 (0.09, 0.11) 0.00 yes 

100 2.67 42 -0.01 (-0.47, 0.46) 1.14 (-4.19, 6.95) -1.38 (-36.59, 37.71) -0.01 (-0.37, 0.38) 0.09 (0.09, 0.10) 0.00 yes 

          

High abundance, High detection               

10 10.33 51 -0.37 (-2.89, 2.60) 6.23 (-7.93, 22.81) -2.88 (-23.44, 22.58) -0.29 (-2.34, 2.26) 0.14 (0.11, 0.15) 0.11 

yes-

ish 

15 10.33 51 -0.23 (-2.48, 2.17) 4.32 (-7.13, 18.33) -3.40 (-30.83, 24.10) -0.23 (-2.06, 1.61) 0.11 (0.10, 0.12) 0.00 yes 

20 10.33 51 -0.19 (-2.25, 1.91) 2.98 (-6.97, 16.01) -2.94 (-37.56, 32.09) -0.15 (-1.88, 1.60) 0.10 (0.09, 0.11) 0.00 yes 

40 10.33 51 -0.18 (-1.49, 1.19) 1.66 (-4.07, 9.92) -7.09 (-50.55, 39.84) -0.18 (-1.26, 1.00) 0.07 (0.06, 0.07) 0.00 yes 

60 10.33 51 -0.04 (-1.25, 1.07) 0.73 (-3.92, 6.40) -2.17 (-61.66, 56.14) -0.04 (-1.03, 0.94) 0.06 (0.05, 0.06) 0.00 yes 

80 10.33 51 -0.07 (-1.10, 0.93) 1.02 (-3.48, 6.07) -6.89 (-76.07, 53.61) -0.09 (-0.95, 0.67) 0.05 (0.05, 0.05) 0.00 yes 
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100 10.33 51 -0.04 (-0.99, 0.85) 0.60 (-3.08, 5.30) -2.65 (-77.98, 72.19) -0.03 (-0.78, 0.72) 0.04 (0.04, 0.04) 0.00 yes 

          

Average abundance, High detection             

10 6 51 -0.24 (-2.08, 1.90) 9.10 (-8.94, 26.79) -2.25 (-16.35, 16.15) -0.22 (-1.63, 1.61) 0.17 (0.13, 0.21) 0.81 no 

15 6 51 -0.22 (-1.77, 1.44) 7.12 (-7.50, 24.09) -3.36 (-21.34, 17.06) -0.22 (-1.42, 1.14) 0.14 (0.12, 0.17) 0.34 no 

20 6 51 -0.16 (-1.57, 1.43) 6.00 (-6.41, 22.23) -3.68 (-26.62, 21.67) -0.18 (-1.33, 1.08) 0.13 (0.11, 0.14) 0.01 yes 

40 6 51 -0.06 (-1.15, 1.17) 2.34 (-6.25, 13.91) -2.44 (-39.09, 34.63) -0.06 (-0.98, 0.87) 0.09 (0.08, 0.10) 0.00 yes 

60 6 51 -0.07 (-0.94, 0.79) 1.90 (-4.58, 10.08) -5.19 (-49.50, 38.98) -0.09 (-0.82, 0.65) 0.07 (0.07, 0.08) 0.00 yes 

80 6 51 -0.04 (-0.78, 0.80) 1.09 (-4.84, 7.94) -1.46 (-54.12, 49.80) -0.02 (-0.68, 0.62) 0.06 (0.06, 0.07) 0.00 yes 

100 6 51 -0.06 (-0.72, 0.57) 0.98 (-4.15, 6.88) -3.24 (-56.26, 51.08) -0.03 (-0.56, 0.51) 0.06 (0.05, 0.06) 0.00 yes 

          

Low abundance, High detection               

20 2.67 51 -0.12 (-0.99, 0.93) 9.29 (-8.90, 26.61) -2.43 (-14.89, 14.82) -0.12 (-0.74, 0.74) 0.18 (0.13, 0.22) 0.84 no 

30 2.67 51 -0.07 (-0.78, 0.86) 7.28 (-9.63, 24.44) -2.46 (-20.13, 20.37) -0.08 (-0.67, 0.68) 0.15 (0.12, 0.17) 0.54 no 

35 2.67 51 -0.08 (-0.78, 0.75) 6.12 (-8.26, 22.59) -2.56 (-22.43, 20.67) -0.07 (-0.64, 0.59) 0.14 (0.12, 0.16) 0.23 no 

40 2.67 51 -0.04 (-0.69, 0.74) 5.24 (-8.42, 22.15) -1.84 (-23.56, 22.83) -0.05 (-0.59, 0.57) 0.13 (0.11, 0.15) 0.07 yes 

60 2.67 51 -0.05 (-0.58, 0.53) 4.27 (-6.23, 18.55) -2.89 (-28.54, 25.77) -0.05 (-0.48, 0.43) 0.11 (0.10, 0.12) 0.00 yes 

80 2.67 51 -0.03 (-0.52, 0.50) 2.86 (-5.52, 15.18) -3.57 (-35.98, 30.26) -0.04 (-0.45, 0.38) 0.10 (0.09, 0.10) 0.00 yes 

100 2.67 51 -0.04 (-0.48, 0.47) 2.78 (-5.09, 13.67) -4.16 (-39.69, 33.94) -0.04 (-0.40, 0.34) 0.09 (0.08, 0.09) 0.00 yes 
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Table T1. Results of simulations evaluating the efficacy of survey protocols using parameters from the 2020 and 2021 spring survey 

data analyzed using time-removal HDS models. Mean (90% credible interval) for bias and coefficient of variation from 500 

simulation runs for each suite of parameters. Different scenarios include combinations of high, average, and low abundance paired 

with either average or high detection. R = number of survey sites, λ = mean abundance per site, sigma = mean sigma, p.avail = mean 

probability of overall availability; CV = coefficient of variation for total population size (Total M) and M.site = estimated number of 

Dusky Grouse per survey site. 

Simulation Parameters 

Bias in λ 
Bias in 

sigma 
p.avail Bias in Total M 

Bias in 

M.site 

CV Total 

M 

Prob. 

CV 

M.total 

> 0.15 

Yes

/No R λ sigma p.avail 

High abundance, average detection               

200 0.31 43 0.65 

0.32 (-0.15, 

1.27) 

11.04 (-7.40, 

30.23) 

-0.03 (-0.27, 

0.24) 

64.52 (-29.02, 

256.44) 

0.32 (-0.15, 

1.28) 

1.38 (0.54, 

2.59) 1.00 no 

1000 0.31 43 0.65 

0.17 (-0.10, 

0.65) 

2.26 (-4.49, 

11.99) 

-0.04 (-0.29, 

0.18) 

175.90 (-99.60, 

658.26) 

0.18 (-0.10, 

0.66) 

0.62 (0.23, 

1.40) 1.00 no 

6000 0.31 43 0.65 

0.01 (-0.06, 

0.09) 

0.44, (-2.33 

3.35) 

-0.01 (-0.12, 

0.09) 

63.86 (-313.64, 

563.16) 

0.01 (-0.05, 

0.09) 

0.15 (0.10, 

0.22) 0.33 no 

            

High abundance, high detection                 

200 0.31 48 0.89 

0.15 (-0.13, 

0.55) 

10.90 (-6.77, 

26.49) 

-0.08 (-0.32, 

0.07) 

30.64 (-22.93, 

115.62) 

0.15 (-0.11, 

0.58) 

0.79 (0.29, 

2.28) 1.00 no 

1000 0.31 48 0.89 

0.00 (-0.08, 

0.09) 

2.49 (-4.59, 

12.39) 

-0.02 (-0.10, 

0.05) 

1.32 (-70.19, 

86.43) 

0.00 (-0.07, 

0.09) 

0.16 (0.14, 

0.20) 0.78 no 

1300 0.31 48 0.89 

0.00 (-0.09, 

0.07) 

1.83 (-4.18, 

10.15) 

-0.01 (-0.09, 

0.04) 

0.20 (-88.30, 

82.51) 

0.00 (-0.07, 

0.06) 

0.14 (0.12, 

0.17) 0.18 no 

1380 0.31 48 0.89 

0.00 (-0.07, 

0.07) 

1.49 (-4.37, 

9.16) 

-0.02 (-0.09, 

0.04) 

4.77 (-80.91, 

95.09) 

0.00 (-0.06, 

0.07) 

0.14 (0.12, 

0.16) 0.11 no 

1390 0.31 48 0.89 

-0.01 (-0.07, 

0.06) 

1.88 (-4.21, 

8.61) 

-0.01 (-0.08, 

0.04) 

-5.11 (-92.07, 

91.14) 

0.00 (-0.07, 

0.07) 

0.13 (0.12, 

0.15) 0.09 yes 

1400 0.31 48 0.89 

0.00 (-0.07, 

0.08) 

1.47 (-4.37, 

8.64) 

-0.01 (-0.07, 

0.04) 

2.80 (-87.32, 

106.15) 

0.00 (-0.06, 

0.08) 

0.13 (0.12, 

0.15) 0.06 yes 

1500 0.31 48 0.89 

0.00 (-0.07, 

0.06) 

1.31 (-4.08, 

7.88) 

-0.01 (-0.09, 

0.04) 

0.52 (-87.88, 

97.36) 

0.00 (-0.06, 

0.06) 

0.13 (0.12, 

0.15) 0.04 yes 

 


