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ABSTRACT 

The greater sage-grouse (Centrocercus urophasianus) is a focal species in the effort to 
conserve imperiled sagebrush ecosystems and associated organisms. Sage-grouse uses of 
landscapes are modulated by their multilevel movement processes. Understanding the relative 
contributions of hard-wired and environmental influences on movement processes is necessary 
for a comprehensive understanding of sage-grouse ecology. Correlates between fitness 
components and measurable landscape conditions may be of limited value if other influences 
such as sage-grouse movement and behavior are not accounted for. Movement behaviors may be 
risky in certain contexts and adaptive in other contexts, and differences in the characteristics of 
movement and therefore space-use among individuals can have implications for survival and 
reproductive performance. We collected detailed records of sage-grouse movements for up to 4 
years per individual to investigate daily behavioral strategies of sage-grouse and therefore 
mechanisms driving habitat use and individual performance. During April–May, 2018–2019, we 
captured 86 (45 in 2018, 41 in 2019) female sage-grouse and outfitted them with GPS 
transmitters. We collected 192,640 geographic coordinates of 86 female sage-grouse during 
2018-04-24 – 2022-04-14 which encompassed 4 complete annual cycles of sage-grouse. We 
confirmed 185 nest attempts of 76 individuals during the nesting seasons of 2018–2021. Hard-
wired or learned seasonal behavior modes appeared to be more influential than vegetation 
conditions. Sage-grouse can exhibit reactive responses to landscape conditions but also use the 
landscape as a function of high-level endogenous constraints likely due to memory mechanisms, 
high temporal predictability of some resources, and moderate spatial heterogeneity of resources. 
Management prescriptions may ignore important ecological levels such as those responsible for 
learned-heuristic movement and space use modes. Relationship and magnitude of associations 
among sage-grouse use-intensity and landscape conditions varied among 7 behavior modes 
which indicates that behavioral and temporal context is important for understanding habitat and 
space use by sage-grouse. Our findings also support a fundamental demographic importance of 
area affinity, fidelity, and familiarity to sage-grouse ecology which has been overlooked in most 
research on sage-grouse or other birds.
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CHAPTER ONE 

GENERAL INTRODUCTION 

Sagebrush Ecosystems 

Sagebrush ecosystems once occupied over 62.7 million hectares of the North America 

west but are presently one of the most threatened in North America and are continuing to be 

destroyed and fragmented (West 1988, Knick et al. 2003, Dobkin and Sauder 2004, Schroeder et 

al. 2004, Welch 2005, Davies et al. 2011, Miller et al. 2011). Most sagebrush ecosystems are 

shrub steppes which are shrub-dominated ecosystems with climates between deserts and 

grasslands where subordinate species are largely a mix of those which occupy deserts or 

grasslands. Intermountain lowland regions of North America currently or historically dominated 

by sagebrushes (woody Artemisia spp) and bunchgrasses are commonly known as sagebrush 

steppes and once occupied approximately 44.4 x 106 ha of the North American west (West 

1983c). The sagebrush steppe ecosystem type is present in 9 western states with Wyoming, 

Idaho, Oregon, Nevada, and Washington accounting for 88 percent of the total. Another major 

shrub steppe vegetation type characterized by Artemisia dominance is Great Basin sagebrush 

which is found south of the sagebrush steppe and occupies approximately 17.9 x 106 ha of the 

Great Basin and parts of the Colorado Plateau in Nevada, Utah, and Colorado (West 1983a). The 

Great Basin type is partly characterized by a lesser herbaceous component compared to that of 

the sagebrush steppe (West 1983a). Numerous biogeographic and ecological regions have been 

proposed to classify regional generalities regarding climate, physiography, lithology, soil, and 

potential biotic communities. Regardless of the classification system used to organize and 
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communicate properties of ecosystems in western North America the distribution of sagebrush 

ecosystems spans multiple types. 

While the majority of acreage where sagebrush is considered the dominant potential 

natural vegetation falls under intermountain sagebrush steppe and Great Basin sagebrush types, 

sagebrush species are distributed beyond these zones and may attain local dominance in other 

areas (Johnson 1978, McArthur and Ott 1996). Silver sagebrush (Artemisia cana) is sparsely 

distributed throughout the northern Great Plains and Wyoming big sagebrush (Artemisia 

tridentata wyomingensis) is common in south-central and south-east Montana, reaching its 

eastern limit in the extreme western Dakotas and the north-west corner of Nebraska. Wyoming 

big sagebrush is ubiquitous in eastern Wyoming, well beyond the zones considered sagebrush 

steppe by those who adopt the potential natural vegetation types of Küchler (Küchler 1964, 1970, 

Johnson 1978, Miller et al. 2011). The intermountain sagebrush steppe and Great Basin 

sagebrush ecosystem types are often subdivided into finer regional zones based on prevalent 

landforms (West 1983b, Miller and Eddleman 2000, Miller et al. 2011). Variously termed 

geographic subdivisions, physiographic provinces, floristic provinces, or ecoregions the 

subdivisions for the sagebrush steppe include the Columbia Basin, northern Great Basin, Snake 

River Plain, and Wyoming Basin. The Great Basin sagebrush is split into the southern Great 

Basin, and Colorado Plateau province. While differences among the biological communities of 

the physiographic provinces certainly exist, the similarities among and differences within these 

communities cannot be overstated. Elevational and edaphic properties of a site within a 

physiographic or ecological subdivision can have a greater influence on the vegetation of a site 

than the broader ecogeographic context (West 1983b). 
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The most prevalent climate of sagebrush steppe is similar to semiarid grassland climates 

which are temperate, semiarid, and continental whereas the more arid climate of Great Basin 

sagebrush results in a desert like ecosystem type. Mean annual temperatures in the sagebrush 

steppe range from 4 to 10° C and mean annual precipitation ranges from 20 to 40 cm (West 

1998). The climate of the Great Basin is characterized by greater seasonal and diurnal 

temperature extremes and average annual precipitation from 15.8 cm to 41.9 cm. Cold winters in 

both sagebrush ecosystem types will generate snowpack and slow melting in the spring will 

transfer moisture to depth in the soil. Sagebrush steppe is generally more resilient, productive, 

and diverse than the Great Basin sagebrush type (West 1983c). Perennial grasses and forbs of 

both types must generally build above-ground biomass in the restricted window between spring 

and early summer when moisture and temperature are conducive to growth. The shrubs in these 

systems have long roots which extract moisture in lower soil layers throughout the warm season. 

Summer precipitation is rarely enough to maintain season-long growth of herbaceous plants 

(West 1988). Although there are subtle and important differences in soil water dynamics among 

the sagebrush ecosystem types, they share some consistent patterns. Spring recharge of soil 

layers and a dry period for top soil layers during the warm season occurs across the entire 

geographic range of big sagebrush ecosystems (Schlaepfer et al. 2012). 

In addition to climatic extremes, shrub steppes are subject to high climatic variation 

which contributes to poor stability of these ecosystems under disturbance. Dominant organisms 

that inhabit sagebrush ecosystems are widely distributed but of low abundance which may be 

owing to the high spatial and temporal variability of environmental conditions (West 1998). The 

broad distribution of dominant species may represent a spatial bet hedging strategy because 
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adverse conditions like fire or drought are unlikely to occur simultaneously across the entire 

species’ range. The low abundance of dominant species is likely due to modest and unreliable 

resource availability. 

Despite their superficially spartan appearance, sagebrush ecosystems support a wide 

array of life-forms. A moderate diversity of vascular plant species has been documented with 13 

to 41 species per site in the course of 2 separate studies of multiple relatively pristine sites and 54 

total species across all sites in another botanical study of intact sagebrush steppe sites (West 

1998).  Over 1000 species of insects have been found on some sites, 76 on sagebrush alone, and 

around 100 bird and 70 mammal species occur in sagebrush ecosystems (Baker et al. 1976, 

Wiens et al. 1991, West 1998). The greater sage-grouse (Centrocercus urophasianus), sagebrush 

sparrow (Artemisiospiza nevadensis), Brewer’s sparrow (Spizella breweri), sage thrasher 

(Oreoscoptes montanus), pygmy rabbit (Brachylagus idahoensis), sagebrush vole (Lemmiscus 

curtatus), sagebrush lizard (Sceloporus graciosus), and pronghorn (Antilocapra americana) are 

all sagebrush obligate species that require sagebrush as a component of their habitat (Paige and 

Ritter 1999). 

Greater Sage-Grouse Conservation 

The greater sage-grouse (hereafter “sage-grouse”), is a gallinaceous bird that has become 

a focal species in the conservation effort to preserve imperiled sagebrush ecosystems and 

associated organisms. The range-wide distribution and abundance of sage-grouse populations has 

been declining since settlers first began exploiting the landscape starting in the 1850’s. 

Population contractions have been attributed to hunting, habitat loss, habitat fragmentation, and 

habitat degradation (Braun 1998). By the early twentieth century, western rangelands had 
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incurred substantial damage from overgrazing which continued until rangeland degradation 

became impossible to ignore (Griffiths 1902, Cottam 1947). 

To assuage decades of irresponsible rangeland-resource exploitation the Taylor Grazing 

Act of 1934 facilitated more responsible grazing practices and an increased awareness of 

declining sage-grouse populations prompted research efforts and regulatory measures to bolster 

populations (Hornaday 1916, Patterson 1952). Subsequent conservation related laws include the 

Fish and Wildlife Act of 1934, Fish and Wildlife Act of 1956, Multiple-Use Sustained-Yield Act 

of 1960, National Wildlife Refuge Administration Act of 1966 (amended by the National 

Wildlife Refuge System Improvement Act of 1997), National Environmental Policy Act of 1969, 

Endangered Species Act of 1973, Sikes Act of 1974, Federal Land and Policy Management Act 

of 1976, and Forest and Rangeland Renewable Resources Research Act of 1978. The collective 

regulatory measures that have been enacted as law to govern public lands and natural resources 

must strike a balance between conservation and the needs of an increasing human population. 

Despite some documented sage-grouse population increases following the cessation of excessive 

grazing and hunting, sage-grouse are still an imperiled species of substantial conservation 

concern (Patterson 1952, Connelly and Braun 1997, Schroeder et al. 2004, Aldridge et al. 2008, 

Connelly et al. 2011c, Allred et al. 2015, Edmunds et al. 2018). 

Past and Present Threats 

Pervasive contemporary threats to sage-grouse are primarily due to human exploitation of 

the landscape which comes in the form of agricultural tilling, energy development, urban 

development, invasive plant introductions, and livestock grazing (Connelly et al. 2004, Connelly 

et al. 2011c, Doherty et al. 2011, Naugle et al. 2011, Walker and Naugle 2011, Wisdom et al. 
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2011). Processes such as wildfires and conifer encroachment interact with anthropogenic 

influences to further imperil sage-grouse and sagebrush ecosystems (Baker et al. 1976, 

D'Antonio 1992, Miller and Rose 1999, Rhodes et al. 2010, Baruch-Mordo et al. 2013). Climate 

change may amplify stressors and complicate interactions between stressors of sagebrush 

ecosystems and sage-grouse populations (Miller et al. 2011). 

Stressors to sage-grouse populations are as diverse as the sagebrush ecosystems on which 

they depend. In the Great Plains and Wyoming Basin provinces previous and future potential 

energy development represents a substantial cause of current and imminent habitat degradation, 

disturbance, and loss (Doherty et al. 2011, Allred et al. 2015). In the north-west Great Plains and 

Columbia Basin substantial areas of sagebrush ecosystems have been lost or degraded due to 

agricultural tilling (Schroeder and Vander Haegen 2011). Cheatgrass (Bromus tectorum) and 

medusahead (Taeniatherum caput-medusae) invasion causes sagebrush ecosystem degradation 

particularly in the warmer lower elevation parts of the Intermountain West where these winter 

annual grasses have phenologies that exploit winter precipitation and avoid the warm dry 

summers that limit competition by native grasses and forbs (Davies et al. 2011, Miller et al. 

2011). Encroachment into sagebrush ecosystems by conifers in higher elevation regions of the 

Intermountain West has been substantial after presettlement and has resulted in a loss of 

herbaceous understory and sagebrush canopy cover (Miller and Rose 1999, Coultrap et al. 2008, 

Miller et al. 2008, Davies et al. 2011). Each sage-grouse population across the current 

distribution must cope with novel combinations of stressors making it crucial to identify and 

understand local threats to which management actions may be tailored. Additionally, a deeper 
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understanding of individual and population-level heterogeneity in sage-grouse behavior and 

population dynamics may result from basic research of novel populations. 

Population- and Individual-Level Heterogeneity 

The behavioral and demographic responses of grouse to environmental conditions can 

vary significantly across space and time (McNew et al. 2013, Fedy et al. 2014, Gregory and Beck 

2014, Coates et al. 2017a, Smith et al. 2020). Spatially heterogenous behaviors or fitness may be 

due to differential habitat conditions interacting with phenotypic plasticity, genetic differences 

between populations or subpopulations, or even genotype × environment interactions with 

different degrees of plasticity in sage-grouse ecotypes. Classic common garden experiments by 

plant ecologists have established that environmental heterogeneity may produce local adaptations 

that result in species ecotypes or clines (Clausen et al. 1940, Clausen and Hiesey 1958, Aston 

and Bradshaw 1966, McNeilly and Antonovics 1968, Turkington 1989). Harsh and highly 

variable conditions across time and space may select for high genetic and ecotypic variability 

and phenotypic plasticity in species that occupy sagebrush ecosystems. After arrival of sagebrush 

progenitors to North America from Eurasia substantial speciation has resulted in 13 different 

Artemisia shrub species including 5-6 subspecies of the major species big sagebrush, Artemisia 

tridentata (McArthur 2005). Genetic differentiation in behavior and other adaptive traits among 

sage-grouse populations is probable given the extent and heterogeneity of sagebrush species and 

sagebrush ecosystems.  
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Landscape and Habitat Concepts 

Given the broad geographic range of sage-grouse and sagebrush ecosystems and the 

complex influence of heterogeneous ecosystem structure and function on sage-grouse 

populations, it is helpful to conceptually frame some research approaches. Ecological sub-

disciplines and associated hypotheses rely on simplifying assumptions and restricted viewpoints 

that require clarification to ensure consistent communication. Three schools of ecology are 

particularly relevant to the science of sage-grouse. Landscape ecology, wildlife ecology, and 

rangeland ecology are interrelated fields with distinct perspectives regarding wildlife habitat. 

Some principles used in landscape ecology and geography provide a sound basis for parsing the 

landscape into elements that may then be classified and grouped based on the aim of research. 

Any attempt to classify a relatively homogeneous area of the landscape into a landscape 

element should recognize the hierarchical ordering of elements, the scale of observation, and the 

perspective taken when considering the interrelatedness of elements (Solon 2005). Landscape 

elements could include rocks, air, water, soil, vegetation, or animals. Landscape elements are 

hierarchically ordered; high-level elements influence lower-level elements and vise versa. Issues 

of scale pertain to the extent and resolution of measurement which can alter how we perceive 

ecosystem structures or processes. Scale of measurement can change the level of a process that 

we observe or may change what we consider a patch which is a spatially distinct and relatively 

homogenous assemblage of landscape elements (Turner et al. 2001, Rolstad 2005). The 

perspective taken when considering interrelatedness of landscape elements pertains to whether 

we are studying the structural or functional aspect of a landscape. If we are interested in 

ecological processes such as how sage-grouse are influenced by landscape elements we must 
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first define the landscape in a structural sense by specifying relevant spatial patterns of landscape 

elements such as vegetation, terrain features, or environmental hazards. Once the structure of the 

landscape is operationally set then we may adopt a functional approach and analyze the 

interrelationships between sage-grouse biology and the landscape elements that we suspect 

compose sage-grouse habitat. 

Habitat definitions and conceptualizations of habitat are disjoint and inconsistent 

(Krausman 1999). Ecologists, wildlife biologists, rangeland ecologists, and the general public 

often have disparate ideas about what habitat is, where it is, and how it relates to wildlife species. 

When referring to sagebrush-steppe habitat, or just sagebrush habitat, we are using the term 

habitat in the structural sense (Gaillard et al. 2010). Structural habitat can be considered a 

category of land cover such as forest habitat or grassland habitat, in which the term encompasses 

a broadly similar assemblage of biotic (plant communities) and abiotic (riparian, steppe, 

mountainous) landscape elements. The structural or habitat-type notion of habitat is often used 

by land managers, policy makers, and the general public because it is synonymous with a cover 

type or patch which is a convenient way to thematically inventory the composition of a 

landscape. The concept of range sites, ecological sites and habitat types have specific meanings 

to rangeland ecologists and have proven useful for classifying ecogeographic variability on 

rangelands using known associations between soils and climax plant communities (Shiflet 1975, 

Hironoka 1987, Brown 2010). Landscape features are synonymous with landscape elements and 

are characteristic features within a landscape such as sites, soils, patches, vegetation associations, 

or broader land cover classes (Hall 1987, Wickham et al. 2014). Landscape-feature classification 

schemes used by rangeland ecologists are based on soils or vegetation associations and are 
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developed as a tool for evaluating the state and variable potential of an explicitly defined area 

with a mind to livestock production. 

Structural habitat types (landscape features) are largely independent of the needs of a 

given species. By contrast, the term functional habitat originates from a niche-based definition of 

habitat as proposed by G. Evelyn Hutchinson (Colwell and Rangel 2009, Gaillard et al. 2010). 

2010). In this theoretical realm habitat refers to all the resources and environmental factors that 

determine the presence, performance, and persistence of a species. Here the concept of the niche 

is inextricably bound to the species; the species' niche is its habitat. The conceptualization of 

functional habitat aligns with popular definitions of habitat used by wildlife biologists. That is, 

the physical space used by an animal and all the abiotic and biotic elements in that space are the 

animal’s habitat. Habitat use refers to the way an animal uses the abiotic and biotic elements 

(landscape conditions) in the areas that it inhabits (Krausman 1999, Morrison et al. 2006). 

Sage-Grouse Ecology  

 Sage-grouse require large tracts of intact functional habitat which they use in a 

hierarchical and temporally variable manner to promote individual fitness in the face of variable 

nutritional needs driven by changing physiologies and substantial risk of predation (Bergerud 

and Gratson 1988). Vegetation provides food, cover from the weather, and cover from predators. 

Cover varies with seasonal plant growth, plant population dynamics, and disturbances such as 

fire, grazing by herbivores, and anthropogenic land use (e.g., tilling, energy development, or 

urbanization) (Moynahan et al. 2006, Dzialak et al. 2013b, Dahlgren et al. 2015, Gibson et al. 

2017, Sianga et al. 2017, Donnelly et al. 2018). The inherent temporal and spatial variability that 

characterizes sagebrush ecosystems has likely selected for adaptive strategies in sage-grouse that 
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maximize fitness across variable conditions (Miller and Eddleman 2000). Indeed, interseasonal 

movements of sage grouse are variable among populations and individuals and are influenced by 

behavioral traditions as well as environmental conditions (Tack et al. 2012, Fedy et al. 2014, 

Newton et al. 2017). 

Sage-grouse have proven to be a species sensitive to anthropogenic disturbances exacted 

by an ever-increasing human population (Walker et al. 2007, Harju et al. 2010, Lebeau et al. 

2014). Individual- and population-level sensitivity to anthropogenic habitat alteration may be due 

to population dynamics that require consistent production under a suite of landscape-element 

compositions and interrelationships as well as metapopulation dynamics that bolster local 

populations via emigration (Crist et al. 2015). The systematic depression of a vital rate such as 

nesting success due to loss and fragmentation of nesting habitat may narrow the margins of 

fecundity necessary for sustainable sage-grouse populations. Compared to other prairie-grouse, 

sage-grouse productivity and rates of population turnover are lower and recovery from 

population declines may be comparatively slow (Allen 1962, Connelly and Braun 1997, 

Connelly et al. 2011a). Population performance and component vital rates of sage-grouse have 

been correlated with climatic conditions (Holloran et al. 2005, Cornelis van Kooten et al. 2007, 

Coates et al. 2018), predator abundance (Mezquida et al. 2006, Bui et al. 2010, Dinkins et al. 

2014), vegetation characteristics (Hagen et al. 2007, Smith et al. 2020), habitat degradation 

(Coates et al. 2017b, Prochazka et al. 2017), habitat fragmentation (Schroeder et al. 2004, Leu 

and Hanser 2011), disease (Naugle et al. 2004, Walker et al. 2004, Taylor et al. 2013), and 

disturbance by anthropogenic activity (Blickley et al. 2012, Taylor et al. 2013, Orning and 

Young 2016). 
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Variability among vital rates from different sage-grouse populations and differential vital 

rate influence on population dynamics underscores the need for population-specific research that 

links population ecology to habitat in such a way that adaptive monitoring and management of 

local populations is facilitated. It is important to evaluate critical vital rates such as nesting and 

female survival for local populations (Taylor et al. 2012, Dahlgren et al. 2016a, Coates et al. 

2017a). For adaptive management to be effective, a process based ecological understanding that 

incorporates spatial and temporal variability will also be necessary (Boyd and Svejcar 2009). 

Local evaluations of population vital rates may uncover causes of variable population 

performance but estimates from short-term studies should be interpreted with caution (Dahlgren 

et al. 2015). When a preponderance of evidence identifies a link between landscape conditions 

and population performance then management prescriptions are more likely to succeed. For 

instance, productivity enhancements due to habitat improvements may buffer a population from 

periodically adverse conditions such as drought or local disease outbreaks. Alternatively, the 

effects of conservation efforts on population performance may be negated by additional stressors 

(Taylor et al. 2013). The first step in proper population management is to identify drivers of local 

population performance which are likely to include some combination of previously documented 

threats, novel threats, and limiting resources. However, correlates between fitness components 

and measurable landscape conditions may be of limited value if other influences such as sage-

grouse movement and behavior are not accounted for (Piper 2011, Ryan et al. 2012, Sih 2013, 

Spiegel and Crofoot 2016, Spiegel et al. 2017). 
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Movement Ecology 

Animal distributions arise from individual movements and movements are driven by 

resource provisioning, shelter seeking, interspecific and interspecific interaction, hard-wired 

behaviors, predator evasion, and breeding system requirements. Movement patterns play a 

primary role in individual fitness and population performance (Manly et al. 1993, Turchin 1998, 

Morales and Ellner 2002). A movement pattern may be risky in certain contexts and adaptive in 

other contexts and differences in characteristic movements and therefore space-use among 

individuals can have implications for survival and reproductive performance (Yoder et al. 2004, 

Prochazka et al. 2017). Analytical techniques that integrate movement patterns and landscape-

condition context may provide a more process-based rendering of animal-habitat relationships. 

For instance, there may be an increase of risk or reward for an animal that periodically adjusts its 

home range versus one that maintains strong fidelity to a home range (Patten et al. 2011). The 

same can be said for the complete, partial or null migration of an individual or population of 

sage-grouse. 

Technologies such as GPS transmitters can provide detailed information about animal 

movements. If patterns in movement data can be reliably attributed to behavioral states then 

behavior-specific inferences can be garnered from popular analytical techniques such as resource 

selection functions (Manly et al. 2002) and survival models (Hosmer et al. 2013). In fact, 

behavior-specific inferences are appearing with greater frequency in the literature due to 

methodological advances that combine GPS technology with increasingly detailed landscape-

condition maps and progressive analytical methods (Gaillard et al. 2010, Dzialak et al. 2013a, 

Dzialak et al. 2015b, Prochazka et al. 2017). Movement-integrated research promises to parse 
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out increasingly detailed explanations for observed habitat-response patterns for sage-grouse. For 

example, due to constraints imposed by traditional radiotelemetry monitoring few research 

efforts have investigated associations between nest survival and detailed movement properties of 

individual females. Additionally, quantitative descriptions of sage-grouse movements and related 

space use can inform management agendas by summarizing the timing and extent of landscape 

use by a population. 

Habitat Responses 

A comprehensive definition of sage-grouse functional habitat will necessitate the 

integration of habitat response characteristics at a diverse array of scales, ranging from the 

immediate vicinity of a grouse to the broader landscape and community scales with which 

individuals interface. A more mechanistic understanding of habitat selection and fitness gradients 

will eventually be required to move beyond the inferential limitations imposed by empirical 

habitat associations derived from phenomenological statistical models. Statistical models 

describe correlations between resource use or survival and landscape-condition patterns without 

specifying any cause-and-effect relationships. In contrast, mechanistic models such as spatially 

explicit population models (SEPM) describe intricate interrelationships between relevant 

synecological factors and individual life histories within a population. Mechanistic population 

models are an area of active research but are currently difficult to implement due to vast data 

requirements, a lack of software implementations, and limited application and assessment in 

applied settings. Realistic mechanistic models will require that landscape conditions of known 

importance (e.g., habitat) be dynamically mapped for multiple life history stages and behavior 

states at an appropriate grain- size; vital rates such as survival and fecundity must be considered 
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in addition to animal movements in response to forage, cover, predation, and abiotic factors 

(Turner et al. 2001). Mechanistic population models could also incorporate immigration and 

emigration rates through explicit treatment of animal movement. Comprehensive modeling of 

functional habitat is not currently feasible but quantified landscape-condition associations can 

represent some component of the true N-dimensional functional habitat (Gaillard et al. 2010). 

We can quantify patterns of disproportionate use of landscape conditions by animals to 

partially define functional habitat. If landscape conditions are differentially distributed between 

used areas and available areas then resource use is disproportionate to availability and selection 

for certain landscape-condition assemblages (habitat) is indicated (Manly et al. 2002, Johnson et 

al. 2006). Resource selection functions (RSFs) combined with resolute geospatial measures of 

structural habitat (i.e., landscape features or feature assemblages) offer a flexible modeling 

approach for estimating the relative probability that a landscape feature is used by an animal 

given that it is encountered (Johnson et al. 2006, Johnson and Seip 2008, Lele 2009). Relative 

probability of selection can also be conceptualized as differential space- or time-use intensity of 

different parcels of the landscape. Directly measuring and modeling use-intensity offers an 

alternative approach that makes less assumptions about the selection process of an animal 

(Marzluff et al. 2001, Millspaugh et al. 2006, Barraquand and Benhamou 2008). 

An issue related to subjective availability sampling for RSFs is that inferences may be 

compromised due to incorrect assumptions about movement constraints on habitat availability 

when behavior modes are aggregated (Cooper and Millspaugh 2001b, Fedy et al. 2012, Northrup 

et al. 2013). Characterizations of movement behaviors (e.g., migration, learning excursions, 

foraging) can help account for behavior modes thereby reducing sampling noise introduced by 
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mixing behaviors when conducting habitat response analyses. Entirely objective and biologically 

justified methods of defining availability for RSFs do not exist and it is currently not possible to 

fully account for behavior modes. That said, habitat-response research tools such as step-

selection functions provide and increasingly mechanistic approach of specifying availability and 

assessing the importance of landscape conditions to animals (Beyer et al. 2010, Avgar et al. 

2016). However, behavior modes are equally relevant to RSF and step-selection function best 

practices because availability may be different among behaviors but neither method 

automatically accounts for behavior. 

Further research is needed to evaluate whether movements and resultant space use may 

be driven by behavioral factors other than reactive response to landscape conditions because 

movement is the mechanism by which differential landscape conditions are encountered. 

Selection of nest sites has been extensively researched for sage-grouse (Schroeder et al. 1999, 

Hagen et al. 2007, Connelly et al. 2011d, Smith et al. 2020) and females have been found to 

prefer sagebrush landcover types. However, at moderate to fine spatial scales preferred landscape 

conditions are far more equivocal across studies (Smith et al. 2020). Selection of a nest site by a 

sage-grouse may be influenced by movement constraints during the pre-laying period that are 

determined by prior knowledge of the nest-site and breeding-lek search area. Some of the 

selection process may be a function of dynamic response and some may be based on prior 

knowledge and habits. Ultimate choice of a nest site may be partly informed by vegetation 

structure at the nest and partly by the quality of the surrounding habitat for incubation break 

foraging. Evaluations of habitat use patterns at nest sites and at foraging sites may contribute to a 

more comprehensive understanding of nesting ecology though few researchers have formally 
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evaluated incubation break habitat use (Hagen et al. 2007, Dzialak et al. 2013a) or movements of 

individual females during nesting. 

Due to the extraordinary research efforts put forth to understand range-wide sage-grouse 

ecology we know that substantial population and individual level variation exists. Intra- and 

inter-population level variability of vital rates and habitat use could be due to genetic differences 

among populations and individuals, learned-behavioral differences, or spatially and temporally 

variable habitat quality and resource availability. Thus, habitat response associations inferred for 

one population may not be transferable to an alternate population due to fundamental differences 

between autecological factors and synecological interactions. Regionally specific observational 

research remains necessary to adequately inform management activities until more 

mechanistically based and thoroughly validated models of species minimum requirements are 

developed. Given the complexity of sagebrush ecosystems, prognostic models of population 

performance based on perturbation scenarios are unlikely to achieve range-wide accuracy in the 

foreseeable future. That said, limitations to modeling population performance based on the 

habitat responses of individual animals are being progressively overcome due to improvements 

in technology that allow vast quantities of data to be collected across multiple spatial and 

temporal process-levels and resolutions. Improved spatial generality of inferences may be gained 

by linking habitat response associations with specific behaviors or activity signatures (statistical 

behaviors) derived from movement data and expert knowledge.
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CHAPTER TWO 

IDENTIFYING LOW-LEVEL BEHAVIOR MODES FOR SAGE-GROUSE USING 

MOVEMENT PROPERTIES AND STATISTICAL CLUSTERING 

Background 

Movement properties can be used to identify behaviors that are important for 

understanding the causes of differential habitat use, survival, and reproduction of animals. GPS 

tracking technology provides detailed movement data that has been used to improve 

understanding of both obscure and well-known species. The greater sage-grouse (Centrocercus 

urophasianus; hereafter “sage-grouse”) is a gallinaceous bird that has been well studied but is 

still the focus of substantial conservation concern despite a herculean effort in science-based 

conservation research and management. Over the course of a year sage-grouse phenology rotates 

through nesting, brooding, late-summer ranging, migration, and winter ranging. Sage-grouse 

phenology involves variation in high-level movement modes such as winter ranging or 

incubating movement behaviors overlying lower-level movements such as transit, searching, 

foraging, roosting, or predator evasion. 

Sage-grouse use landscapes variably across time and space in relation to phenological 

stage and landscape conditions (Wallestad 1971, Connelly et al. 1988, Walker et al. 2016, Smith 

et al. 2020). Assessment of population responses to seasonally variable habitats has benefited 

from research that focuses on the hierarchical and multi-scale nature of both female resource 

selection and demographic rates during seasonal periods (Doherty et al. 2010, Dzialak et al. 

2011, Aldridge et al. 2012, Blomberg et al. 2013, Walker et al. 2016, Coates et al. 2020). 
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However, drivers of population performance are typically inferred from the evaluation of 

population-level associations among vital rates and exogenous landscape conditions without 

regard for individual- or population-level behaviors (Lima and Zollner 1996). 

 In addition to accounting for multiple spatial scales and seasonal periods, deeper 

behavioral contexts of habitat responses are also important for valid inference (Owen-Smith et al. 

2010). In fact, behavior modes may be largely responsible for the multiscale nature of animal 

space use (Morales and Ellner 2002, Schick et al. 2008, Van Moorter et al. 2016). Disparate 

behavior types may confound the interpretation of space-use patterns and related habitat 

responses if pooled within analyses (Cooper and Millspaugh 2001a, Erickson et al. 2001, 

Morrison et al. 2006, Abrahms et al. 2016). For instance, associations between home range size 

and landscape conditions may be confounded by the conflation of individuals that shift as 

opposed to dilate and contract their home range (searching vs. sedentary types, Mueller and 

Fagan (2008)). 

 Understanding movement modes will improve our understanding of interactions between 

sage-grouse adaptive strategies and habitat conditions. Sage-grouse behavior modes represent 

endogenous states that likely cause variability in grouse versus habitat relationships. The 

isolation of endogenous (e.g., sex, age, behavior type) versus exogenous (e.g., weather, 

landscape patch characteristics, predation risk) causes of variability in the performance of sage-

grouse (Coates et al. 2018) will promote more mechanistic and accurate modeling of sage-grouse 

populations and may therefore improve the efficacy of management prescriptions (Ford 1999, 

Heglund 2002). When habitat responses such as landscape-condition use or female survival can 

be attributed to specific movement behaviors then spatial generality and specificity of estimated 
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habitat-performance relationships may improve (Gaillard et al. 2010, Dzialak et al. 2013a, 

Dzialak et al. 2015a).  

Accounting for behaviors in wildlife-environment relationships first requires the 

identification of behavior modes from movement patterns. Some female sage-grouse behavior 

modes such as incubating and brood-rearing are readily determined via radio tracking (Wallestad 

1971, Wallestad and Pyrah 1974, Dzialak et al. 2011), have been studied extensively (Dahlgren 

et al. 2016a, Smith et al. 2020), and can substantially influence population dynamics (Taylor et 

al. 2012, Dahlgren et al. 2016a). Migration and the associated winter-ranging mode are examples 

of sage-grouse behaviors that have not been as extensively studied but are also important for 

understanding population performance (Taylor et al. 2012, Dinkins et al. 2017, Newton et al. 

2017). Incubation and brood-rearing modes can be identified using radiotracking and direct 

observation while migration, exploratory movements, and laying behavior can be inferred from 

remote radiotracking data (Bunnefeld et al. 2011, Dzialak et al. 2011, Edelhoff et al. 2016, 

Gelling et al. 2022). All behaviors that sage-grouse exhibit may provide insights into their 

ecology so any that can be identified are worth investigating. 

Researchers have successfully identified behavior modes using multivariate partitioning 

of movement properties (Van Moorter et al. 2010, Abrahms et al. 2017), model-driven analysis 

of single properties (Owen-Smith et al. 2010, Bunnefeld et al. 2011, Gurarie et al. 2016, Hooten 

et al. 2017), and ad-hoc criteria with single properties (Dzialak et al. 2015a, Gelling et al. 2022). 

Many movement properties are useful for behavior-mode identification (Edelhoff et al. 2016, 

Gurarie et al. 2016, Abrahms et al. 2017) and can be calculated with existing software (Calenge 

et al. 2009, Bracis et al. 2018, Lyons et al. 2019). 
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Movement modes identified from individual-level movement properties are most likely to 

represent low-level movements (e.g., foraging, loafing, roosting) because high-level movements 

such as brood-rearing are complex amalgamations of numerous ecological factors (e.g., genetic 

traits, learning, phenology, habitat response). Low-level movement mode identification is often 

limited to taxis (i.e., movements in response to a stimulus) and area restricted search behavior 

(two-state models) which are commonly conceptualized as resident vs. migratory, or inter- and 

intra-patch movements (Patterson et al. 2009, Dzialak et al. 2015a, McClintock et al. 2017, 

Seidel et al. 2018). High-level movement mode classification is more challenging because these 

modes are not adequately described by one or two movement properties which increases 

difficulty of identification and interpretation. However, high-level modes can be inferred from 

direct observation, phenological context, and association with low-level movement modes. 

Objectives  

Our goals were to 1) identify high-level movement modes using telemetry observation 

and field checks, 2) classify low-level inferred movement modes for sage-grouse (e.g., intensive-

use foraging, area restricted search, exploratory), and 3) evaluate the biological interpretability 

and potential utility of the inferred modes for improving inferences from telemetry-based 

wildlife data. We evaluated inferred modes relative to high-level modes, relative to characteristic 

movement patterns, and relative to landscape conditions experienced by females during each 

inferred mode. 

Study Area 

Our study area was principally on a 425,000-ha area in southern Valley County in north-

central Montana, USA (47.66258 N to 48.44968 N, 106.43546 W to 107.44770 W). The area 
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was within Glaciated Northern Grasslands and North Central Highlands as described by (Cleland 

et al. 1997, McNab et al. 2007), and within the sage-grouse Great Plains Management Zone 

(Management Zone 1) which corresponds to the Silver Sagebrush Province (Connelly et al. 

2004, Stiver et al. 2006). Land cover in the area consisted of approximately 49% big sagebrush 

steppe, 20% Great Plains mixed-grass prairie, 8% cultivated crops, 6% mat saltbush shrubland, 

2% Great Plains riparian, and 2% Great Plains woodland savanna (Anderson et al. 1976, Comer 

et al. 2003). Additional limited land cover types included greasewood flats, shale badlands, and 

Great Plains wooded draws and ravines (Anderson et al. 1976, Comer et al. 2003) The area was 

characterized by high annual variation in average monthly temperature (-10.1 °C to 21.7 °C) and 

low mean annual precipitation (29.6 cm), with over half occurring May – July (Arguez et al. 

2010). Approximately 75% of the study area was in public ownership, managed predominately 

by the U.S. Bureau of Land Management (BLM), as well as the U.S. Fish and Wildlife Service 

(USFWS, Charles M. Russell National Wildlife Refuge [CMR]), and the State of Montana. The 

area was situated just below the northernmost extent of the Wyoming big sagebrush (Artemisia 

tridentata wyomingensis) distribution in Montana with silver sagebrush (Artemisia cana) 

becoming the only woody Artemisia species occurring farther north. The area exhibited 

substantial overlap between a mixed-grass prairie ecosystem and a sagebrush steppe ecosystem 

which makes it unique in comparison to many other sage-grouse habitats (Dinsmore et al. 2002, 

Moynahan et al. 2007).  

Basic information on the ecology of this sage-grouse population is lacking. The study 

population represents a core component of the broader northern Montana population (NMP) 

distributed throughout north-central Montana, southeastern Alberta and southwestern 
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Saskatchewan (Garton et al. 2011, USFWS 2013). Minimum male counts at leks within the NMP 

were reported to be approximately 2,700 males and the population is thought to be one of the few 

remaining stable populations of sage-grouse (Garton et al. 2011). The southern segment of the 

NMP lies below the Milk River and was designated a Priority Area for Conservation (PAC 

[corresponds to BLM Priority Habitat Management Area]) which was key habitat identified by 

state or BLM conservation planning efforts (USFWS 2013). 

Methods 

Sage-grouse Captures  

During April–May, 2018–2019, we captured 89 (48 in 2018, 41 in 2019) female sage-

grouse using spotlighting techniques and hoop nets (Giesen et al. 1982, Wakkinen et al. 1992). 

We attempted a representative sample by spreading captures around 3 separate watersheds in our 

study area. Upon capture we banded females with uniquely-numbered leg bands. We aged 

females as adult or yearling by examining the appearance of primary feathers 9 and 10 (Braun 

and Schroeder 2015). We attached a VHF-equipped 22-g solar powered Global Positioning 

System (GPS) Platform Transmitter Terminal (PTT; model GT-22GS-GPS, GeoTrak, Inc., 

Apex, NC, USA) to each of 86 birds (we had 86 PTTs) using a rump-mounted harness (Rappole 

1991). PTTs were programmed to collect 4–10 locations every day and upload data every 1.5–

3.0 days to the Argos satellite system. PTT performance was specified separately for different 

seasons and the 2018 programming was slightly adjusted for 2019 based on observed PTT 

performance. The most aggressive programming for a season was 11 March – 1 September 

where PTTs obtained up to 10 fixes every day and uploaded data to the Argos system 
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approximately every two days. All animal handing was approved under Montana State 

University’s Institutional Animal Care and Use Committee (protocol # 2017-57).  

Sage-grouse Monitoring  

The PTTs had an approximate 3-year lifespan and movement data from equipped sage-

grouse was recorded until female mortality or loss of a PTT. During the breeding seasons of 

2018, 2019 and 2020, females were monitored by downloading GPS fixes and other PTT sensor 

data from Argos system servers every 3–5 days. During the breeding season of 2021 females 

were monitored monthly because fewer project resources were available. We used multiple lines 

of evidence to infer female status. Localization of a PTT indicated either a nesting female, a dead 

female, or a dropped PTT. The PTTs were equipped with an activity sensor which indicated if 

the PTT was experiencing motion; static activity sensor readings indicated a mortality or 

dropped PTT. The visitation of nest sites can lead to observer-induced bias in vital rate estimates 

(Gibson et al. 2015), therefore we only visited localization sites if a mortality was suspected. In 

most cases we could differentiate mortalities from nests by reviewing the GPS fix data (Coates 

and Delehanty 2008, Dzialak et al. 2011). If a mortality was indicated, we verified this with a 

field visit and recorded the condition of carcass remains including evidence of predation 

(Blomberg et al. 2013). We estimated the date of incubation initiation for each confirmed nest by 

reviewing the GPS data. Nest fate was verified in the field when a female had moved off the nest 

for ≥ 3 days. Nests that failed just prior to incubation were verified in the field if ≥ 2 locations 

accrued in the same spot due to periodic visits by a female. After nest abandonment, we located 

nests and recorded evidence regarding nest fate. Hatching was indicated by eggs with detached 

membranes and eggshells that were consistent with being pipped by chicks (Rearden 1951). We 



42 
 
considered a nest successful if we found evidence that ≥ 1 egg had hatched. Nest monitoring 

allowed us to identify two nesting behaviors for all nests identified: laying and incubating. We 

labeled points along a female’s trajectory as laying if they preceded incubation initiation by ≤ 7 

days. Sage-grouse lay an average of ~2 eggs/3 days and average clutch sizes are ~8 eggs 

(Wallestad 1971, Schroeder et al. 1999). Our specification of 7 days is conservative and ensures 

that females with small clutches are not erroneously considered laying. 

In 2018 and 2019, we monitored females with successful nests and conducted pre-dawn 

brood counts to ascertain if a female was with a brood. Females with broods were located with 

recent PTT locations and then Yagi antennas and receivers. All VHF transmitters deployed in 

2018 had failed by April 2019 so no brood checks were conducted on females outfitted with 

PTTs in 2018. Likewise, all VHF transmitters deployed in 2019 had failed by breeding season 

2020 so no brood checks took place in 2020 or 2021. Brood checks were conducted at 2-week 

intervals after hatch date for up to 6 weeks (3 checks). When no chicks were detected, we re-

conducted the check within 5 days if the female exhibited defensive behavior consistent with 

brooding. If females immediately flushed out of the vicinity and no chicks could be located the 

brood was recorded as unsuccessful. Brood checks were not performed on exact 2-week intervals 

due to logistical constraints such as weather delays. We labeled points along a female’s 

trajectory as brood-rearing for periods when brood status was known. In cases where females 

had successful nests, but brood status could not be checked, we labeled all points as potential 

brood rearing for ≤ 14 days after hatch. Our specification of 14 days was based on our 

observation of brood survival and our expectation that many of the females with hatched nests 

would have broods for ≥ 14 days after hatch. 
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We ultimately gave behavioral labels to all points in a female’s trajectory using a 

combination of PTT data interpretation, field checks, and migration analysis. We identified the 

following known-behavior modes: laying, incubation, brood, potential brood, exploratory, and 

winter ranging. See Appendix B for background, methods, and results describing migration 

research we conducted to delineate winter-range behavior modes using data from 2018–2020. 

We used identical migration analyses to delineate winter-range behavior during 2020–2022. 

Movement Properties 

We chose 7 movement properties that we expected would be useful for discriminating 

among movement modes, such as area-restricted search, transit, or exploratory movements. Our 

7 space- and time-use properties (movement properties) were derived from 4 common movement 

properties: short-term home range area, total residence time, site revisitation, and time-to-return. 

We calculated variability of residence time and time-to-return and calculated revisitation at two 

scales which resulted in 7 variables from 4 base movement properties. 

Equal-interval sampling is recommended to reduce unbalanced sampling bias for 

calculating many movement properties (Calenge et al. 2009, Bracis et al. 2018, Lyons et al. 

2019). Therefore, we calculated movement properties after subsetting our relocation data to a 6-

hour equal-interval temporal resolution. We calculated residence time and revisits at a 100-m 

patch scale and short-term home range scale which captured fine-scale and coarse-scale space- 

and time-use for sage-grouse because movement processes can be spatial-scale dependent (Van 

Moorter et al. 2013, Van Moorter et al. 2016). We calculated the coefficient of variation (CV) of 

residence time and time-to-return at the 500-m patch scale to capture variation in the periodicity 

of time-use at a scale intermediate to our 100-m patch and home-range scale. We considered 
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movement ecology of sage-grouse, collinearity among scales, computational feasibility, and 

GIS-based visual evaluation of different scale options when making movement property 

selections. Female sage-grouse that had been monitored for fewer than 30 days were excluded 

from analyses because of limited relocation histories from which to derive the following space- 

and time-use movement properties: 

1. Short-term home range area (h-A). Short-term home range area (i.e., hull area) was 

calculated as the area of each hull polygon derived as a time-local convex hull (short-

term home range); hull area provides a geometric delineation of space use and is 

analogous to a home-range area calculated for brief periods (Lyons et al. 2013, 

Lyons et al. 2019). 

2. Hull revisits (h-RV). Hull revisits was calculated as the number of revisits to each 

short-term home range (Lyons et al. 2013, Lyons et al. 2019). We calculated 

visitation rate as the number of occurrences in a hull separated by a time gap ≥ 1 

week. 

3. Hull duration (h-D). Hull duration was calculated as the average number of points 

for visits to each short-term home range; hull duration provides an index to the 

typical duration of visits to each short-term home range and is therefore similar to 

mean residence time (Barraquand and Benhamou 2008, Lyons et al. 2019). 

4. Total residence time (RT). Residence time was calculated as the mean summed 

duration of all path segments within each 100-m virtual circle (patch) positioned on 

points used to construct each short-term home range (Bracis et al. 2018, Lyons et al. 
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2019). Residence time quantified the average total time spent in the vicinity of each 

point within a short-term home range. 

5. Revisitation (RV). Revisitation was calculated as the mean of the total number of 

path segments that intersected each 100-m radius virtual circle (patches) positioned 

on trajectory points used to construct each short-term home range (Bracis et al. 2018, 

Lyons et al. 2019).  

6. Variability of time-to-return (TtoR-CV). Variability of time-to-return was calculated 

as the coefficient of variation of 500-m time-to-return among the sets of patches 

created from points used to construct each short-term home range (Bracis et al. 2018, 

Lyons et al. 2019).  

7. Variability of residence time (RT-CV). Variability of residence time was calculated 

as the coefficient of variation of 500-m residence time among the sets of patches 

created from points used to construct each short-term home range (Bracis et al. 2018, 

Lyons et al. 2019).  

All movement properties were calculated using the tlocoh, recurse, and purr packages 

(Bracis et al. 2018, Lyons et al. 2019, Henry and Wickham 2020) in R (R Development Core 

Team 2013). Appendix A describes the tuning parameters that we used to construct time-local 

convex hulls. Calculation of revisits (RV) and time-to-return (TtoR) are influenced by a time-

threshold parameter that defines the time elapsed before a movement outside of a patch is 

considered a separate visit. We set the time-threshold parameter to 0 to capture recursive 

movements to nest-sites in addition to broader-scale recursions.  
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Cluster Analysis 

We partitioned 110,024 instances (i.e., objects, hulls, short-term home ranges) of our 7 

sage-grouse movement properties (i.e., descriptors variables) into distinct movement modes 

(groups of similar home ranges) using three clustering methods: 1) k-means partitioning, 2) 

partitioning around medoids (PAM), and 3) hierarchical clustering (Legendre and Legendre 

2012, Borcard et al. 2018). Transformation to attain approximate normality of variables is 

recommended for k-means and PAM clustering and standardization is recommended whenever 

Euclidean distances are used to compute similarity properties for clustering (Borcard et al. 2018). 

Therefore, we normalized all movement property variables using transformations (Table 1) and 

standardized all variables to zero mean and unit variance using the function decostand of R-

package vegan (Oksanen et al. 2019). 

K-means clustering We performed k-means analysis (Lance and Williams 1967, 

MacQueen 1967, Legendre and Legendre 2012) using the kmeans function of the R-package 

cluster (Maechler et al. 2019). A major limitation of k-means analysis is that k number of clusters 

must be pre-specified by the user. Therefore, we examined the cluster quality of a range of k 

values using function cascadeKM of the R-package vegan and function clusGap of R-package 

cluster (Maechler et al. 2019, Oksanen et al. 2019). We used the Calinski index, simple structure 

index, and gap statistic to compare cluster quality and select the number of clusters (Rousseeuw 

1987, Kaufman and Rousseeuw 2009, Borcard et al. 2018). We also used function clValid of R-

package clValid  on a random subset (20,000 observations [reduced computation time]) of our 

total dataset to examine internal validation and stability validation statistics for a range of k 

values (Brock et al. 2008). 
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Partitioning around medoids We performed partitioning around medoids (Kaufman and 

Rousseeuw 2009) using function clara (Clustering Large Applications [PAM for many 

observations]) of R-package cluster and compared cluster quality with gap statistics calculated 

using function clusGap. We also used function clValid of R-package clValid on a random subset 

(20,000 observations) of our total dataset to examine internal validation and stability validation 

statistics for a range of k values (Brock et al. 2008). 

Hierarchical clustering Following Husson et al. (2011) we performed hierarchical 

clustering in two steps (mixed algorithm) because the number of hull instances was too large for 

available agglomerative clustering algorithms. We first performed k-means analysis using 

function kmeans (centers = 500) of R-package cluster. We then performed agglomerative 

hierarchical clustering (Legendre and Legendre 2012) on the 500 centroids using Ward’s 

minimum variance methods (Ward 1963) and R function HCPC of package FactoMineR 

(method = “ward”). We used the elbow method, silhouette method, and gap statistic to compare 

cluster quality and select the number of clusters (Rousseeuw 1987, Le et al. 2008, Kaufman and 

Rousseeuw 2009, Husson et al. 2011). We also used function clValid of R-package clValid  on a 

random subset (20,000 observations) of our total dataset to examine internal validation and 

stability validation statistics for a range of k values (Brock et al. 2008).  

Ecological validation After examining the cluster quality, internal validation, and stability 

validation statistics from the k-means, PAM, and Ward-hierarchical methods we chose a single 

number of clusters for each method. To further validate and inform our choice of the k-means-

based or PAM-based clustering scheme, we created figures illustrating the chosen clustering 

results relative to the movement properties and known-behavior modes. Combining movement 
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property, inferred-behavior mode, and known-behavior mode visualizations into a comparative 

multi-panel visualization greatly facilitated interpretation. The first panel employed principal 

component analysis and illustrated how laying, incubation, brood, potential brood, exploratory, 

and winter ranging modes correspond to the movement properties. Panel two and four illustrated 

the clustering results as clouds of objects (hull instances) and group centroids in the plane of the 

first two principal components derived from the movement properties. The third panel illustrated 

whether a given movement mode had a significantly (p ≤ 0.05) higher or lower mean than the 

overall mean of each of the 7 movement properties (Le et al. 2008). Our k-means and PAM 

cluster-interpretation plot was created using R packages FactoMineR, factoextra, cluster, vegan, 

and ggpubr (Le et al. 2008, Maechler et al. 2019, Oksanen et al. 2019). 

We further evaluated the Ward-hierarchical clustering scheme using a 3-panel figure 

illustrating the chosen clusters relative to the movement properties. The first panel employed 

principal component analysis and illustrated how the 500 cluster centroids were dispersed 

relative to the movement properties. The second panel simultaneously illustrated the clustering 

results as a dendrogram (Zuur et al. 2007, Husson et al. 2011, Legendre and Legendre 2012, 

Borcard et al. 2018) and the cloud of objects (hull instances) in the plane of the first two 

principal components derived from the movement properties. The third panel illustrated whether 

a given movement mode had a significantly higher or lower mean than the overall mean of each 

of the 7-movement properties (Le et al. 2008). The Ward cluster-interpretation plot was created 

using R packages FactoMineR, factoextra, vegan, grid, and gridExtra (Le et al. 2008, Maechler 

et al. 2019, Oksanen et al. 2019). 
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We tested for statistically significant correspondence among levels of the clustering 

results and known behavior modes using the test.a function provided in Legendre and Legendre 

(2012), book section 4.10.3. We further examined the association among levels of the clustering 

results and levels of the high-level modes using Goodman and Kruskal’s tau (τ) measure 

(Pearson 2018). 

All our validation methods led us to choose the PAM 8-mode result (PAM-8) as the final 

clustering scheme. Our final choice was also informed by how we intended to use the clusters in 

further sage-grouse ecology research and by spatial validation of clusters GIS-mapped relative to 

sage-grouse movement patterns. We were particularly interested in labeling exploratory or transit 

movements in our dataset; factor-level 5 of the PAM-8 result appeared to adequately correspond 

to exploratory or transit movements. 

To facilitate interpretation of our final clustering scheme we evaluated correspondence 

between the PAM-8 clusters and 18 landscape-condition variables (Table 1, Appendix C) 

standardized to 0 mean and unit variance using a multivariate regression tree (MRT; De'ath 

(2002)) which partitioned 18 landscape condition variables under control of the PAM-8 inferred 

movement modes. We included the following landscape conditions that we expected may be 

related to sage-grouse movements in our study area: daily temperature, daylength, distance from 

first nest, barren cover, landscape-object height, variability of landscape-object height, radius of 

variance of landscape-object height, sagebrush cover, variability of sagebrush cover, vegetation 

biomass, variability of vegetation biomass, radius of variance of vegetation biomass, fine-scale 

landscape ruggedness derived from LiDAR data, normalized height, variability of normalized 

height, proximity of water bodies, variability of highly rugged areas derived from digital 
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elevation model data, variability of topographic wetness (Table 1, Appendix C). Our MRT 

allowed us to explore, test, and describe relationships between landscape conditions and the 

PAM-8 movement modes. We used statistically significant (p ≤ 0.05) relationships between our 

landscape condition variables and our 8 statistically inferred movement modes to gauge 

biological relevance of the movement modes. MRTs can be viewed and used as a clustering 

technique as well as a constrained multivariate regression technique (De'ath 2002). Therefore, in 

addition to explaining variation in PAM-8 modes as a function of landscape conditions, our 

MRT also defined landscape condition assemblages unique to certain combinations of PAM-8 

movement modes. In other words, our MRT provided a framework for aggregating and 

interpreting clustering results. Aggregation of clustering categories is useful when the 

statistically optimal number of cluster categories is too many given research objectives. For 

example, a wildlife researcher might identify numerous land cover classes by clustering 

multispectral satellite data but then use the MRT approach with ancillary spatial data to reduce 

the number of classes for subsequent research of wildlife-habitat relationships. We used the tree 

structure of the MRT to identify landscape conditions which discriminated the split at each node, 

and we used the cluster structure to identify landscape conditions that were indicative of each 

terminal node (i.e., tree leaf, cluster). Note that our landscape condition variables were 

standardized so the usual interpretation of indicator values based on species frequency and 

abundance (De'ath 2002) is altered. Indicator values for our data are interpreted as variables that 

have high within-cluster (terminal node) averages compared with overall averages. 
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Results 

Optimal Number of Clusters 

All three clustering methods exhibited variability in the optimal number of clusters 

indicated by each cluster-quality index. Optimal number of clusters for the k-means method was 

indicated to be 6, 7, and 14 using the Calinski, simple structure index, and gap statistic, 

respectively (Appendix D, Figure 25). A transition from steep decline to a gentle slope indicates 

the optimal clusters based on the Calinski method. Optimal number for the PAM method was 

indicated to be 8 based on the gap statistic (Appendix D, Figure 26) and optimal number for 

Ward hierarchical was 4, 2, and 9 using the elbow, silhouette, and gap statistic (Appendix D, 

Figure 27)). Internal validation statistics indicated lowest connectivity (lower is better) using 2 

clusters for all three methods (Appendix D, Figure 28). The Silhouette index (higher is better) 

indicated that for all three methods 2 clusters were optimal (Appendix D, Figure 28). The Dunn 

index indicated that 20 k-means, 13 PAM, and 7 Ward-hierarchical clusters might be preferred 

(Appendix D, Figure 28). The stability validation statistics indicated that either 2 or 20 clusters 

were preferred with k-means and PAM performing similarly and outperforming the Ward-

hierarchical method (Appendix D, Figure 29). 

Variability in number of clusters identified by each clustering method and cluster-quality 

index combination indicated that choice of clustering method and evaluation method both 

introduce subjectivity into the number and nature of clusters identified. High variability in the 

optimal number of clusters identified also indicated a weak clustering structure in the data. At the 

6-hour temporal resolution of our data, female sage-grouse movement properties exhibited a 

mostly continuous gradient. Nevertheless, our multi-method approach indicated that the 
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preferred number of clusters was > 1 and ≤ 20. We chose 8 PAM clusters (inferred movement 

modes) as the final method and cluster number combination because it provided a balance 

between having too many clusters to interpret and too few to be useful for differentiating 

behaviors. Cluster quality, internal validation, and stability statistics are useful for evaluating 

potential preferred number of clusters, but interpretability relative to ecological variables is more 

important. 

Cluster Levels vs. Movement Properties  

Patterns of clustering relative to movement properties was similar among the k-means, 

PAM and Ward hierarchical methods as indicated by cluster-membership point cloud plots 

(Appendix D, Figures 30–32). The dispersion of hull instances and cluster centers along the PC1 

axis was primarily due to revisits and residence time at one extreme and hull area, variability in 

residence time and variability in time-to-return at the other (Appendix D, Figures 30–32). Hull 

instances and cluster centers along the PC2 axis were organized by hull revisits and hull duration 

which were negatively correlated (Appendix D, Figures 30–32). Therefore, behavior-mode 

clusters were mainly organized along a gradient described by high fine-scale time-use intensity 

at one end and large hull areas and high moderate-scale variability in periodicity of time-use at 

the other. Clusters were secondarily organized along a gradient contrasting hull revisits with 

average duration of visits to hulls. 

Our principal component analysis triplots further demonstrated that clusters can be 

described based on extremes along the various gradients of the movement properties (Appendix 

D, Figures 30–32). For instance, PAM cluster 6 from the 8-mode clustering was high in revisits, 

residence time and hull duration relative to the respective means of each movement property 
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using the total dataset. In contrast, PAM cluster 5 was high in hull area, variability in residence 

time and variability in time-to-return relative to the overall means. Mode 3 was similar to mode 6 

but lower than 6 in revisits and residence time. Mode 4 was similar to mode 8 but lower than 8 in 

revisits and residence time, and mode 1 was close to overall means for all movement properties. 

Mode 7 had relatively higher hull revisits, and mode 2 had relatively lower hull revisits and 

higher area compared to overall means. 

Cluster-by-Behavior Co-occurrence  

Presence-absence co-occurrence tests indicated that 31, 19, and 7 cluster by known-

behavior pairs exhibited significant (α = 0.05) co-occurrence for k-means, PAM, and Ward 

hierarchical methods, respectively (Appendix D, Figure 33). The Goodman Kruskal tau measure 

indicated differential correspondence between the known behavior modes and the statistically 

inferred modes from each method (Appendix D, Figure 34). The k-means 14 mode classification 

was the most predictive (τ = 0.21) of the 7 known behavior modes, but the PAM 8 classification 

was a close second (0.17). Furthermore, the known behavior categories were similarly predictive 

of the PAM-8 classification (τ = 0.06) compared with the k-means-14 classification (τ = 0.05). 

The Ward-hierarchical 2-mode classification was weakly predictive (τ = 0.7) of the known 

modes but the known modes were somewhat predictive (τ = 0.23) of the 2 Ward-hierarchical 

modes. 

Cluster Levels vs. Environmental Variables  

Our multivariate regression tree analysis resulted in a 3-leaf tree that explained 6.09% of 

the variability in the 18 landscape-condition variables. The first node explained 4.25% of the 

variation and the second node explained 1.84% (Figure 1). The first split was defined by a 
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distinction between landscape conditions associated with PAM-8 inferred movement modes 3, 4, 

6, and 8 versus 1, 2, 5, and 7. The second split was defined by the difference between landscape 

conditions associated with mode 6 versus 3, 4, and 8. The discriminant landscape conditions for 

the first node were daylength, distance to first nest, and mean daily temperature. Modes 3, 4, 6, 

and 8 were associated with elevated values of daylength and temperature and modes 1, 2, 5, and 

7 were associated with elevated values of distance to first nest. The discriminate variables for the 

second split were variability in vegetation height, variability in sagebrush cover, variability in 

topographic wetness index, variability in landscape ruggedness, and variability in normalized 

height. The final partition into 3 leafs (i.e., clusters, terminal nodes) was associated with 18 

indicator variables that had statistically significant elevated values for certain clusters (Table 2). 

Daylength was the top indicator value for the PAM8 = 6 cluster, mean daily temperature was the 

top indicator value for the PAM8 = 3,4,8 cluster and distance from first nest was the top 

indicator value for the PAM8 = 1,2,5,7 cluster. 

Discussion 

Space and resource use by animals is often investigated on seasonal time scales by 

quantifying home range properties in geographic space or resource selection in environmental 

space (Boyce and McDonald 1999, Manly et al. 2002, Boyce 2006, Kie et al. 2010, Walter et al. 

2011, Powell and Mitchell 2012, Northrup et al. 2013). Historically, studies evaluating resource 

selection of sage-grouse do not identify or incorporate well-resolved behaviors or activity 

patterns of individuals (Lima and Zollner 1996, Kirol et al. 2012, Roever et al. 2014, Walker et 

al. 2016, Coates et al. 2020). Using seasons as grouping levels or subsetting data with blanket 
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seasonal intervals has obvious merit for constraining the spatiotemporal context of space-use or 

habitat selection research but represents a simplistic and subjective study design. 

Arbitrary, ill-conceived, or omitted groupings of any sort may result in inferential issues 

such as confounding, ecological fallacy, casual ambiguity, or otherwise deficient analyses where 

the ecological signals being investigated are not properly analyzed, resulting in erroneous 

interpretation (Gelfand et al. 2010, Plant 2012). Sage-grouse and other animals exhibit 

differential movement behaviors and habitat selection within seasonal periods (Fedy et al. 2012, 

Dzialak et al. 2015a, Abrahms et al. 2016, Walker et al. 2016, Bakner et al. 2019) which may 

represent separate statistical populations of habitat selection events. Estimating single population 

parameters from a mixture of multiple distinct statistical populations makes interpretation 

difficult or nonsensical. Habitat selection analyses that use resource selection probability 

functions (Manly et al. 2002, Lele 2009) may be particularly sensitive to this issue due to the 

importance of the comparison between use and unused or available distributions in 

environmental space. Ignoring behavior states may muddle the selection process if animal 

preference or habitat-element availability are different among states (Bastille-Rousseau et al. 

2010, Van Moorter et al. 2016). An example would be the pooling of 2 behaviors with different 

use and availability processes where the use samples are pooled, and availability is sampled 

using a single blanket definition. Brooding sage-grouse in our study area were observed using 

moderate shrub cover on hillsides near the tops of hills or mid-slopes for roosting but during the 

day would forage or loaf in low-lying areas that generally had denser shrub or herbaceous cover. 

Conflating roosting (sparser cover than available) and loafing (denser cover than available) 

samples could ‘average out’ the 2 distinct use-intensity signals. 
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Seasonal delineations of analysis windows attempt to account for time varying behavioral 

states and dynamic habitat-element availability (Morrison et al. 2006, Birkett et al. 2012) which 

are integrally linked (Van Moorter et al. 2016) and can corrode inferences when not properly 

accounted for (Martin et al. 2008, Forester et al. 2009, Dzialak et al. 2013a, Roever et al. 2014, 

Dzialak et al. 2015a, Bakner et al. 2019). For instance, it does not make sense to combine 

summer and winter spatial-location data in a resource selection analysis without specifying a 

seasonal grouping structure. It is likewise poor practice to combine loafing, foraging and 

exploratory locations for sage-grouse without strong evidence that the mixing of behavior states 

is irrelevant to a given question or analysis. Differences in movement patterns among behavior 

types have implications for pooling data across types in research focused on evaluating wildlife-

habitat relationships (Jachowski et al. 2013, Roever et al. 2014, Dzialak et al. 2015a, Abrahms et 

al. 2016, van Toor et al. 2016, Gelling et al. 2022). Some effort has been made to address 

behavior specificity of habitat responses for sage-grouse, however, even with detailed movement 

data researchers rely on simple and subjective ad-hoc criteria to define behavior modes such as 

within and between patch movement (low-level modes) or broods 0-2 weeks and broods 3-5 

weeks (high-level modes) (Dzialak et al. 2015a, Gelling et al. 2022). Repeatable and 

quantitatively rigorous methods are needed to understand, objectively identify, and delineate 

behavior modes. 

Cluster Analysis  

Identification of biologically useful categories from multivariate datasets of animal 

movement characteristics can be accomplished with a variety of tools but the tool used can 

influence results (Legendre and Legendre 2012). We designed our analysis to mitigate two 
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important limitations of cluster analysis: 1) clusters are heuristically derived and have no 

inherent biological relevance, and 2) clusters may change across different cluster analysis 

methods (Borcard et al. 2018, Pearson 2018). Therefore, we used robust multi-method clustering 

solutions that identified a clustering structure which appeared repeatedly across multiple 

clustering efforts. The result was identification of relatively stable groups of short-term home 

ranges with similar movement properties within groups (i.e., clusters, low-level movement 

modes). Our results illustrate that detailed analysis of movement data holds promise for 

identifying and describing movement-behavior modes for sage-grouse that cannot be directly 

observed or inferred from known phenology. We found that movement modes were largely 

discriminated along a continuum between movement activity (i.e., hull area, variability in 

residence time, variability in time-to-return) at one end and use-intensity (i.e., residence time, 

patch revisits) at the other. 

Low-Level Modes vs. High-Level Modes  

Our PCA plots of the PAM centroids (multivariate cluster means) demonstrated 

discrimination among the modes and facilitated interpretation of the inferred PAM modes 

relative to the known behavior modes (high-level modes). For instance, PAM modes 2, 5, and 7 

are associated with exploratory or winter ranging movements, and modes 6 and 8 align with 

incubating movements. All other modes were intermediate along the continuum between 

exploratory movements and movements like incubation. Connectivity or overlap among the 

intermediate modes was substantial but their biological relevance remained interpretable relative 

to movement property variation and known behavior modes (high-level). Attribution of the PAM 

modes to each of our hull instances will greatly improve the classification of exploratory 
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movements because we have high confidence that the PAM-5 mode represents a transit or 

exploratory mode. Our confidence is garnered from the rigorous and multifaceted multivariate 

analysis that we have presented. We also have high confidence that the PAM-6 mode matches 

movement patterns of grouse known to be incubating. Attribution of our incubation-like mode to 

hull instances that do not correspond to incubation could be used to identify intensive-use type 

movements (e.g., central-place foraging) within higher level modes. 

Low-Level Modes vs. Landscape Conditions 

Our use of a multivariate regression tree (MRT) to validate the PAM-8 clusters relative to 

environmental variables was fruitful in 2 important ways: 1) the results of the MRT provided an 

additional level of validation of our PAM-8 clustering result by testing for association with 

environmentally relevant variables, and 2) the MRT helped describe the ecological relevance of 

each inferred behavior mode. Validation of a classification or clustering scheme using subject 

matter information is arguably more important than internal validation statistics or indices 

(Legendre and Legendre 2012) and is philosophically analogous to biological validation routines 

designed to improve statistical clustering of genomic data (Yeung et al. 2001).  

Our MRT aggregated the PAM-8 clustering scheme into an MRT-3 clustering scheme 

which organized the PAM-8 clusters into 3 clusters along the movement activity versus use-

intensity movement-property gradient, thereby corresponding with our movement-property 

clustering results. The MRT-3 clustering scheme was somewhat unexpected because our MRT 

analysis contained no information about movement properties, only environmental variables. The 

MRT cluster PAM8 = 1, 2, 5, and 7 corresponded to exploratory, winter ranging and unknown 

behavior modes whereas the PAM8 = 3, 4, and 8 cluster corresponded to the laying, incubating, 
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brood, potential brood, and unknown categories. The MRT cluster PAM8 = 6 corresponds to the 

laying and incubating cluster. Our interpretation is that the gradients of variation in the 

movement properties are sufficiently correlated with the gradients of variation in the 

environmental variables to reproduce a similar multivariate clustering scheme using only the 

environmental variables and movement-property based PAM-8 clusters. Given that we included 

daylength, daily temperature, and distance to first nest and they were the strongest indicator 

variables for the MRT-3 result, we conclude that the PAM-8 modes are largely defined by 

seasonality of movement activity. 

Seasonality of movement patterns was also associated with differential landscape 

conditions. For instance, our MRT class PAM8 = 1, 2, 5, and 7 (exploratory, winter range, 

unknown) was associated with higher values of distance from first nest, bare ground, 

heterogeneity of vegetation biomass, and variability in terrain ruggedness. Our PAM8 = 6 

(reproduction including brood-rearing) cluster was associated with higher values of daylength, 

normalized height, vegetation biomass, topographic ruggedness, vegetation height, and 

heterogeneity of vegetation height. Our PAM8 = 3, 4, and 8 cluster was associated with higher 

values of daily temperature, variability in vegetation biomass, and variability in sagebrush cover 

relative to the overall mean for all observations combined. Overall, sage-grouse in our study area 

tended to nest on higher topography (higher normalized height [PAM8 = 6]) but used lower lying 

areas at other times of year. Also, sage grouse in our study area made distinct movements away 

from breeding habitat to winter ranges (higher distance from first nest [PAM8 = 1, 2, 5, and 7]). 

Our primary aim here was not to evaluate and report sage-grouse wildlife-habitat relationships 
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but we stress that multivariate regression tress or a similar biological validation step are 

important for justifying, defining, and interpreting inferred behavior modes. 

Conclusions 

The validity of our inferences about statistically inferred behavior modes are compelling 

because they are based on multiple movement properties, correspondence with known behavior 

modes, and correspondence with environmental variables. We successfully identified an 

exploratory-type movement mode and an incubation-type mode that can be used in future 

research to account for these modes in habitat delineations or female survival models. Moreover, 

all the PAM-8 inferred low-level modes could be more rigorously defined by future research if 

ecological processes such as survival or disease risk differ among each mode (Cattarino et al. 

2016, Dougherty et al. 2022). 

Our results indicate that behaviors such as loafing or incubation breaks are difficult to 

resolve using 6-hr interval relocations and the 7 movement properties that we used. However, 

use of similar behavior-mode identification methods with higher temporal-resolution relocation 

data is likely to identify greater clustering structure and more detailed movement modes (Mills et 

al. 2006, Rowcliffe et al. 2012).  Researchers with finer temporal resolution relocation data have 

classified diurnal behavior modes such as loafing and night-roosting, patch use and interpatch 

transit movements, and incubation break behaviors using simple ad-hoc movement-data 

thresholds and temporal context (Dzialak et al. 2015a, Bakner et al. 2019, Gelling et al. 2022). 

Behavior modes have also been identified using more objective statistical clustering methods 

with diverse vertebrate taxa (Abrahms et al. 2017) and we have shown that multivariate 

clustering of movement properties is useful in objectively parsing behavior for sage-grouse. The 
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volume and sophistication of animal movement datasets will continue to increase, and there 

exists a call for a unified movement-behavior theory (Nathan et al. 2008). We champion the use 

of detailed movement data to improve the wildlife-ecology knowledge base but caution that 

subjective ad-hoc definitions and methods will impede progress just as has occurred for issues of 

ecological scale and habitat-response research (Krausman 1999, Scott et al. 2002, Wiens and 

Moss 2005). We expect that species-specific behaviors of importance will become resolved in 

the scientific literature as more researchers begin inferring movement modes from detailed 

tracking data. Establishing best practices regarding which behaviors are identified and how they 

are identified will help promote a unified movement-behavior theory. Behavior-specific 

investigations of how animals use geographic and environmental space will engender a less 

biased and more process-based rendering of species-habitat relationships (Lima and Zollner 

1996, Morales and Ellner 2002, Roever et al. 2014). Multivariate statistical approaches in 

combination with movement properties derived from detailed movement data are a viable 

solution to rigorous and objective behavior classification.
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Figures And Tables  

Table 1. Description of all variables analyzed to identify sage-grouse behavior modes using 7 movement properties and statistical 
partitioning of the data. Column 4 indicates either the power by which a variable was transformed or a logit transformation. 

Label Raw Predictor Computed Summary Statistic Transformation Ecological Relevance 
Movement properties  

h.A hull area  hull area 0.285 size of short-term home range 

h.RV hull revisits  hull revisits logit intermittent importance of area 

h.D hull duration hull-mean number of points per 
visit  0.1 average time-use intensity 

RV 100-m patch revisits  hull-mean revisitations of 100-m 
patches 0.035 intermittent importance of patches within hull 

RT 100-m patch residence time hull-mean residence time in 100-
m patches 0.075 total fine-scale time-use intensity 

RT.500CV CV of 500-m residence time hull-CV of residence time in 500-
m patches 0.45 variability in intermittent importance of patches 

within hull 

TtoR.500CV CV of 500-m time to return hull-CV of median time-to-return 
of patches (x^-1.25)*-1 variability in intermittent importance of patches 

within hull 
Landscape Conditions 

prism.tmean.day
_mean temperature mean of values at nearest 

neighbor points 1 PRISM estimates of daily mean temperature 

lod_mean length of day mean of values at nearest 
neighbor points 1 the time interval between sunrise and sunset 

NDnest_mean distance to first nest mean of values at nearest 
neighbor points 1 distance of individual sage-grouse from their 

first nest 
B.100 barren mean of 100-m patch zonal means 1 bare ground cover estimates 

Height height mean of 100-m patch zonal means 1 index of the height of objects on the landscape, 
typically vegetation 

Height.rCD coefficient of determination 
(rCD) of height  rCD of 100-m patch zonal means 1 heterogeneity of the height of objects on the 

landscape, typically vegetation 

Height.RoV radius of variance (RoV) of 
height  

mean RoV of 100-m patch zonal 
means 1 proximal heterogeneity of objects on the 

landscape, typically vegetation 



 
 

63 

 
 

Sage.100 sage mean of 100-m patch zonal means 1 sagebrush cover estimates 

SAGE.30.CV sage hull-CV of 30-m patch zonal 
means 1 heterogeneity of sagebrush cover estimates 

Veg.100 vegetation biomass mean of 100-m patch zonal means 1 index of vegetation that incorporates digital 
surface model data 

Veg.100.rCD vegetation biomass hull-rCD of 100-m patch zonal 
means 1 heterogeneity of biomass index 

Veg.RoV.100 radius of variance (RoV) of 
biomass 

mean RoV of 100-m patch zonal 
means 1 proximal heterogeneity of biomass index 

LiDEM.VRM.30 LiDAR vector ruggedness 
measure 

hull-mean of 30-m patch zonal 
means 1 index of fine-scale landscape ruggedness due to 

features such as stream banks   

n.H.30 normalized height hull-mean of 30-m patch zonal 
means 1 elevation of the land surface normalized by 

surrounding area   

n.H.30.CV normalized height hull-CV of 30-m patch zonal 
means 1 heterogeneity of local-area normalized 

elevation  

WB.100 proximity to water bodies hull-mean of 100-m patch zonal 
means 1 proximity to water bodies at a location  

VRM.30.CV DEM vector ruggedness 
measure 

hull-CV of 30-m patch zonal 
means 1 heterogeneity of topographic ruggedness that 

highlights severe ruggedness 

TWI.30.CV topographic wetness index hull-CV of 30-m patch zonal 
means 1 heterogeneity of expected or potential soil 

wetness based on topography 
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Table 2. Table of covariates that had statistically significant indicator values for clusters. 
Covariate Cluster Indicator 

Value Probability 

lod__mean            PAM8 = 6 0.4987 0.001 

Veg.100              PAM8 = 6 0.2141 0.001 

n.H.30               PAM8 = 6 0.2012 0.001 

LiDEM.VRM.30         PAM8 = 6 0.1781 0.001 

Height.RoV           PAM8 = 6 0.17 0.001 

Height               PAM8 = 6 0.0982 0.001 

prism.tmean.day_mean PAM8 = 3,4,8 0.2925 0.001 

Veg.100.rCD          PAM8 = 3,4,8 0.2021 0.001 

SAGE.30.CV           PAM8 = 3,4,8 0.1816 0.001 

NDnest_mean          PAM8 = 1,2,5,7 0.4028 0.001 

Height.rCD           PAM8 = 1,2,5,7 0.3214 0.001 

n.H.30.CV            PAM8 = 1,2,5,7 0.3014 0.001 

TWI.30.CV            PAM8 = 1,2,5,7 0.269 0.001 

Veg.RoV.100          PAM8 = 1,2,5,7 0.2585 0.001 

B.100                PAM8 = 1,2,5,7 0.2212 0.001 

VRM.30.CV            PAM8 = 1,2,5,7 0.2114 0.001 

WB.100               PAM8 = 1,2,5,7 0.1627 0.001 

Sage.100             PAM8 = 1,2,5,7 0.1236 0.001 
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Figure 1. A) Multivariate regression tree (MRT) structure of 18 landscape-condition variables 
partitioned under control of an 8-mode PAM clustering scheme. The tree has 2 splits (1, 2) and 3 
terminal nodes (3, 4, 5) with the first split explaining 4.25% of the variation in the landscape 
variables and the second spit explaining 1.84%. The tree is labeled with the PAM nodes 
associated with each split. B) Principal component analysis triplot illustrating MRT terminal-
node membership of sage-grouse hull instances relative to the 18 landscape variables and 7 
supplementary movement properties.
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CHAPTER THREE 

DECIPHERING PATTERNS OF YEAR-ROUND SPACE- AND TIME-USE INTENSITY IN 

SAGE-GROUSE OF NORTHEASTERN MONTANA 

Background 

Animal distributions are strongly influenced by individual movements which are, in turn, 

driven by resource provisioning, shelter seeking, interspecific and intraspecific interactions, 

predator evasion, breeding system requirements, and individual personality traits. Movement 

behaviors play a primary role in individual fitness and population performance (Millspaugh and 

Marzluff 2001, Yoder et al. 2004, Prochazka et al. 2017, Bakner et al. 2019) but the integration 

of movement ecology with population ecology and conservation science is in its infancy (Tear et 

al. 1997, Turchin 1998, Schick et al. 2008, Morales et al. 2010, Hooten et al. 2017). Discovering 

the nuanced ways in which movement structures a species’ ecology requires detailed observation 

of the movement process and prior life-history and ecological knowledge of a study organism. 

The greater sage-grouse (Centrocercus urophasianus; hereafter “sage-grouse”) is a 

gallinaceous bird with a long history of ecological study resulting from its imperiled 

conservation status (Patterson 1952, Connelly et al. 2004, Connelly et al. 2011a, Knick and 

Connelley 2011, Leu and Hanser 2011, Miller et al. 2011, Edmunds et al. 2018). Sage-grouse 

movements are a response to variable habitat requirements driven by changing physiologies 

which must be met on a highly variable landscape while maximizing individual fitness in the 

face of substantial risk of predation (Bergerud and Gratson 1988). Vegetation provides food, 

cover from the elements, and cover from predators, but varies with seasonal plant growth, plant 
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population dynamics, and disturbances such as fire, grazing by herbivores, and anthropogenic 

land use (France et al. 2008, Beck et al. 2009, Naugle et al. 2011, Schroeder and Vander Haegen 

2011, Allred et al. 2015). Both food resources and the value of cover to an animal can be altered 

by land management, seasonal climatic phases, and weather events such as hailstorms, drought, 

and snowfall (Moynahan et al. 2006, Dzialak et al. 2013b, Dahlgren et al. 2015, Gibson et al. 

2017, Sianga et al. 2017, Donnelly et al. 2018). The inherent temporal and spatial heterogeneity 

that characterizes sagebrush ecosystems has likely selected for adaptive movement strategies in 

sage-grouse that bolster fitness across variable conditions (Miller and Eddleman 2000). An ever-

increasing human footprint coupled with the evident sensitivity of sage-grouse populations to 

endogenous and exogenous environmental stressors necessitate a precise and accurate 

understanding of sage-grouse ecology on which to base conservation measures. 

Spatiotemporal variability in habitat composition and arrangement can translate to 

variability in habitat use patterns and population vital rates across regions (Wiegand et al. 1999, 

van Toor et al. 2016, Edmunds et al. 2018). Variability among vital rates from different sage-

grouse populations and differential vital rate influences on population dynamics (Taylor et al. 

2012, Dahlgren et al. 2016a, Coates et al. 2017a) underscores the need for population-specific 

research that links space use and demographic processes to habitat in such a way that facilitates 

adaptive monitoring and management of local populations. Movement-integrated research may 

be key to understanding the complex relationships between sage-grouse and the landscapes they 

inhabit (Wallestad 1971, Dunn and Braun 1986b, Connelly et al. 1988). 

Movement is integral to space-use and resource selection (Moorcroft and Barnett 2008, 

Kie et al. 2010, Morales et al. 2010, Van Moorter et al. 2016). Differential use-intensity 
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represents the mechanism by which landscape conditions influence a species’ seasonal habitats 

and population vital rates (Morales et al. 2010, DeCesare et al. 2014, Gibson et al. 2016, 

Sandford et al. 2017, Mangelinckx et al. 2018, Fierro-Calderón and Martin 2020) and has 

commonly been measured using utilization distributions (Millspaugh et al. 2006) or resource 

selection functions that average use-intensity among numerous behaviors (Beyer et al. 2010). A 

spatiotemporally detailed examination of behavior-specific space- and time-use intensity 

properties such as residence time and revisits may help identify mechanisms that dictate space 

use which cannot be isolated when using convolved measures of use-intensity (Barraquand and 

Benhamou 2008, Moorcroft and Barnett 2008, Benhamou and Riotte-Lambert 2012). Residence 

time is a movement property that quantifies differential time-use in the vicinity of points along a 

trajectory. Residence time has been proposed as a movement property useful for segmenting 

movement trajectories into distinct movement bouts and identifying areas that are profitable to 

an animal (Barraquand and Benhamou 2008, Kapota et al. 2017). Revisitation is especially 

useful for identifying repeatedly used zones along a trajectory such as nest sites, roost sites, dens, 

or point-source resources such as watering holes (Bracis et al. 2018). Movement properties such 

as residence time, revisitation, time-to-return, ranging area, and directionality of movement are 

also useful for identifying animal behavior modes (Johnson et al. 2002, Van Moorter et al. 2010, 

Dzialak et al. 2015a, Abrahms et al. 2017). 

Use-intensity varies among and within seasonal (e.g., breeding and non-breeding) use 

areas through changes in residence time and revisitation rates (Bastille-Rousseau et al. 2010) that 

result from a combination of innate differences in personality among individuals (Biro and 

Stamps 2008, Wolf and Weissing 2012, Weiss 2018) and variability in resource distribution and 
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quality experienced by individuals (Van Moorter et al. 2016). Moreover, individuals vary in their 

preference for certain landscape conditions and therefore modulate the landscape conditions they 

experience (Mueller and Fagan 2008, Powell and Mitchell 2012, Van Moorter et al. 2016). Thus, 

documenting associations among environmental factors, and individual-specific movement 

properties may yield more interpretable management- and conservation-related inferences than 

identifying correlates with global space use (i.e., home range size) or use-intensity (i.e., resource 

selection) (Benhamou and Riotte-Lambert 2012, Van Moorter et al. 2016). 

A first step for a comprehensive understanding of sage-grouse movement ecology is to 

parse apparent individual and environmental influences on space- and time-use patterns. 

Understanding how landscape condition, behavior mode, or individual traits influence space- and 

time-use intensity patterns will promote the integration of the movement process into our 

understanding of wildlife-habitat relationships. 

Objectives 

Our goals were 1) to examine relationships among space- and time-use intensity metrics 

(movement properties), and 2) parse variability in individual-level movement properties into 

components due to spatial, temporal, behavioral, and individual-level characteristics. We used a 

multivariate analysis of 15 movement-metric response variables to estimate and quantify 

relationships among movement properties. To determine if the movement-property 

interrelationships are fundamental to sage-grouse ecology, we examined them considering recent 

movement ecology theory linking residence time and time between revisits to resource selection 

strength (Van Moorter et al. 2016). To tease apart movement property variation due to landscape 

conditions while accounting for individual-level status (i.e., age, behavior mode) we: 1) 
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identified laying, incubation, brood-rearing, potential brood-rearing, unclassified (pre-laying, 

summer, fall), winter ranging, and exploratory behavior modes to control for known behavioral 

modes, and 2) evaluated the strength of associations between landscape conditions (e.g., terrain, 

vegetation cover) and temporal modulators (e.g., daily temperature, daily precipitation, 

daylength) with the 15 movement properties. We employed a multivariate variance partitioning 

approach (partial redundancy analysis) to isolate variation in individual-level movement 

properties due to vegetation, terrain, temporal modulators, and behavior modes. 

Study Area 

Our study area was principally on a 425,000-ha area in southern Valley County in north-

central Montana, USA (47.66258 N to 48.44968 N, 106.43546 W to 107.44770 W). The area 

was within Glaciated Northern Grasslands and North Central Highlands (Cleland et al. 1997, 

McNab et al. 2007) and within the sage-grouse Great Plains Management Zone 1 which 

corresponds to the Silver Sagebrush Province (Connelly et al. 2004, Stiver et al. 2006). Land 

cover in the area consisted of approximately 49% big sagebrush steppe, 20% Great Plains mixed-

grass prairie, 8% cultivated crops, 6% mat salt shrubland, 2% Great Plains riparian, and 2% 

Great Plains woodland savanna (Anderson et al. 1976, Comer et al. 2003). Additional limited 

land cover types included greasewood flats, shale badlands, and Great Plains wooded draws and 

ravines (Anderson et al. 1976, Comer et al. 2003). The area was characterized by high annual 

variation in average monthly temperature (-10.1 °C to 21.7 °C) and low mean annual 

precipitation (29.6 cm), with over half of annual precipitation occurring May – July (Arguez et 

al. 2010). Approximately 75% of the study area was in public ownership, managed 

predominately by the U.S. Bureau of Land Management (BLM), as well as the U.S. Fish and 
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Wildlife Service (USFWS, Charles M. Russell National Wildlife Refuge [CMR]), and the State 

of Montana. The area was situated just south of the northernmost extent of the Wyoming big 

sagebrush (Artemisia tridentata wyomingensis) distribution in Montana; silver sagebrush (A. 

cana) becomes the only woody Artemisia species further north. The area is a transition zone 

between a mixed-grass prairie ecosystem and a sagebrush steppe ecosystem which makes it 

novel in comparison to most sagebrush ecosystems throughout the range-wide sage-grouse 

distribution. 

Our population of sage-grouse represents an important component of a larger 

metapopulation; however, basic information on the population ecology of this population is 

lacking. The study population represents a core component of the broader northern Montana 

population (NMP) distributed throughout north-central Montana, southeastern Alberta, and 

southwestern Saskatchewan (Garton et al. 2011, USFWS 2013). Minimum male counts at leks 

within the NMP were ~2,700 males, and the population is thought to be one of the few remaining 

stable populations of sage-grouse across the species’ range (Garton et al. 2011). The southern 

segment of the NMP lies below the Milk River and was designated a Priority Area for 

Conservation (PAC [corresponds to BLM Priority Habitat Management Area]) in state and BLM 

conservation planning efforts (USFWS 2013). 

Methods 

Sage-grouse Captures 

During April–May, 2018–2019, we captured 89 (48 in 2018, 41 in 2019) female sage-

grouse using spotlighting and hoop-netting (Giesen et al. 1982, Wakkinen et al. 1992). We 

attempted to capture a spatially-balanced, representative sample by spreading captures around 3 
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separate watersheds in our study area. Upon capture, we banded females with uniquely 

numbered leg bands. We recorded standard morphometrics and collected blood from toenail 

clippings on Nobuto blood filter strips (Dusek et al. 2014). We aged females as adult or yearling 

by the appearance of primary feathers 9 and 10 (Braun and Schroeder 2015). We attached a 

VHF-equipped 22-g solar powered Global Positioning System (GPS) Platform Transmitter 

Terminal (PTT; model GT-22GS-GPS, GeoTrak, Inc., Apex, NC, USA) to each of 86 birds using 

a rump-mounted harness (Rappole 1991). All PTTs were programmed to collect 4–10 locations 

every day and upload data every 1.5–3.0 days to the Argos satellite system. PTT programming 

was specified separately for different seasons and the 2018 programming was adjusted in 2019 

based on prior PTT transmission success. Our most aggressive programming for a season-year 

was 11 March – 1 September where PTTs obtained up to 10 fixes every day and uploaded data to 

the Argos system approximately every two days. PTTs attempted to collect ≥ 4 locations per day 

regardless of season or PTT batch. All animal handling was approved under Montana State 

University’s Institutional Animal Care and Use Committee (protocol # 2017-57).  

Sage-grouse Monitoring  

The PTTs had an approximate 3-year lifespan and movement data from equipped sage-

grouse was recorded until the female died or lost the PTT. During the breeding seasons of 2018, 

2019 and 2020, females were monitored by downloading GPS fixes and other PTT sensor data 

from Argos system servers every 3–5 days. During the breeding season of 2021 PTT data was 

monitored monthly using a less intensive protocol suitable to a reduced number of live 

individuals. We used multiple lines of evidence to infer female status. Localization of a PTT 

indicated either a nesting female, a dead female, or a dropped PTT. The PTTs were equipped 
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with an activity sensor which indicated if the PTT was experiencing motion; static activity sensor 

readings indicated a mortality or dropped PTT. The visitation of nest sites can lead to observer-

induced bias in vital rate estimates (Gibson et al. 2015), therefore we only visited localization 

sites if a mortality was suspected. In most cases incubation recesses (movements by females off 

nests) were evident in the GPS fix data and helped separate mortalities from nests (Coates and 

Delehanty 2008, Dzialak et al. 2011). If a mortality was indicated, we verified this with a field 

visit and recorded the condition of carcass remains including evidence of predation (Blomberg et 

al. 2013). We estimated the date of incubation initiation for each confirmed nest by reviewing 

the GPS data. Nest fate was verified in the field when a female had moved off the nest for ≥ 3 

days. Nests that failed just prior to incubation were verified in the field if ≥ 2 locations accrued 

in the same spot due to periodic visits by a female. After nest abandonment, we located nests and 

recorded evidence regarding nest fate. Hatching was indicated by eggs with detached membranes 

and eggshells that were consistent with being pipped by chicks (Rearden 1951). We considered a 

nest successful if ≥ 1 egg had hatched. Nest monitoring allowed us to identify two nesting 

behaviors for all nests identified: laying and incubating. We labeled points along a female’s 

trajectory as laying if they preceded incubation initiation by ≤ 7 days. Sage-grouse lay an 

average of ~2 eggs/3 days and average clutch sizes are ~8 eggs (Wallestad 1971, Schroeder et al. 

1999). Our specification of 7 days is conservative and ensures that females with small clutches 

are not erroneously considered laying. 

In 2018 and 2019, we monitored females with successful nests and conducted pre-dawn 

brood counts to ascertain if a female was with a brood. Females with broods were located with 

recent PTT locations and then Yagi antennas and receivers using signals from the PTT-attached 
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VHF transmitters. We conducted brood checks on females only in the year they were first 

captured and marked because VHF transmitters failed within one year of deployment. Brood 

checks were conducted at 2-week intervals after hatch date for up to 6 weeks (3 checks). When 

no chicks were detected, we re-conducted the check within 5 days if the female exhibited 

defensive behavior consistent with brooding to confirm brood loss. If females immediately 

flushed out of the vicinity and no chicks were located the brood was recorded as unsuccessful. 

Logistical constraints (e.g., weather) prevented regular brood checks at 2-week intervals, so 

broods were flushed to confirm survival every 17 days on average. We labeled points along a 

female’s trajectory as brood-rearing for periods when brood status was known active. In cases 

where females had successful nests, but brood status could not be checked, we labeled all points 

as potential brood rearing for ≤ 14 days after hatch. Our specification of 14 days was based on 

our observation of brood survival an d our expectation that many of the females with hatched 

nests would have broods for at least 14 days after hatch. 

Time-Local Movement Properties 

Female sage-grouse monitored for fewer than 30 days were excluded from analyses 

because of limited relocation histories from which to derive space- and time-use response 

variables. We segmented space use by each sage-grouse into space-time local hulls (minimum 

convex polygons [MCPs]). We subset relocations to a 6-hour sampling interval to prevent bias in 

hull construction due to irregular sampling (Lyons et al. 2013). We used the R package T-

LoCoH to process the 6-hr regular-trajectory data and quantify spatiotemporal patterns of sage-

grouse movements including: hull-enclosed points, area of hulls, duration of visits (analogous to 

recursive-based residence time), visitation rate (analogous to recursive-based revisits), hull 
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eccentricity, and mean and standard deviation of nearest neighbor point speeds (Appendix E, 

Table 11). Appendix A describes the tuning parameters that we used to construct time-local 

convex hulls. We calculated visitation rate as the number of occurrences in a hull separated by a 

time gap ≥ 1 week. We calculated visit duration as the mean number of occurrences per visit 

(Lyons et al. 2019). We calculated eccentricity using the shape parameters of a minimum closing 

ellipse for each nearest neighbor point set (Lyons et al. 2019). Eccentricity varies from 0 to 1 

with 0 being a perfectly round ellipse and 1 being a severely elongated linear ellipse; ellipse 

elongation indicates directional movements. We calculated hull area as the area of each hull 

polygon. Hull area provides a geometric delineation of space use and is analogous to a home-

range area calculated for brief periods. We calculated hull-enclosed points as the number of 

points from an individual’s trajectory enclosed by each hull. Hull-enclosed points is related to 

the intensity of a utilization distribution except hull-based intensity is time-local. We also 

calculated use-intensity (h-UI) as hull-enclosed points divided by area which represents the areal 

density of used points and approximates the density of a utilization distribution. Other properties 

associated with the movement mode or activity of an animal are the mean speed and standard 

deviation of speeds (speed-SD) attributed to the nearest neighbor points from which a hull is 

constructed. Given hulls of equal area, high movement speeds might indicate that a hull was 

rapidly traversed over a limited area whereas low movement speeds could indicate a plodding 

trajectory or high residence time in a few patches. Given similar mean speeds, speed-SD of a 

highly traversed hull or a hull constructed from a plodding trajectory would be lower than for a 

hull with multiple rest points connected by rapid directional movements. 
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Point-Patch Recursive Movement Properties 

We calculated point-patch revisitation properties representing movement activity in the 

vicinity of previously visited points. We subset relocations to a 6-hour sampling interval prior to 

calculation of recursive movement properties to maintain temporally balanced sampling (Bracis 

et al. 2018). The calculation of revisits (RV) and time-to-return (TtoR) are influenced by a time-

threshold parameter that defines the time elapsed before a movement outside of a patch is 

considered a separate visit. We set the time-threshold parameter to 0 to capture recursive 

movements to nest-sites in addition to broader-scale movements. We calculated point-patch 

revisitation rate (RV) and residence time (RT) to help distinguish among intensity values 

associated with familiarity versus areas of ephemeral importance. Point-patch revisitation was 

calculated as the total number of path segments that intersect the virtual circles positioned on 

trajectory points (Bracis et al. 2018). Residence time was calculated by summing the duration of 

all path segments within each circle to quantify time spent in the vicinity of each point 

(Barraquand and Benhamou 2008, Bracis et al. 2018). Residence time has also been calculated as 

the average duration of each visit to the circle (Barraquand and Benhamou 2008, Van Moorter et 

al. 2016), so we calculated an average residence time (RTmu) variable for comparison with total 

residence time (RT). Average residence time may highlight movement patterns that are not well 

resolved by total residence time. We calculated the median number of hours elapsed between 

visits which represents the typical periodicity of intermittent patch use (TtoR). We also 

calculated the net displacement of every relocation away from the first nest site known for each 

female (ND-nest). If a female never initiated a nest, then the first location in the trajectory is 

used as the start point. Our ND-nest variable accounts for differential seasonal space use and 
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seasonal home-range fidelity by quantifying movement in relation to the first nesting region (or 

capture location) of each female. 

Previous research indicates that the scale at which variation in movement properties is 

calculated can influence observed relationships between movement, space-use, and resource 

selection (Van Moorter et al. 2016). Therefore, we calculated the coefficient of variation (CV) of 

RT and TtoR at the 100-m and 500-m spatial threshold (extent). We used a 100-m radius extent 

to calculate all other properties because a 100-m extent is consistent with extents known to be 

associated with sage-grouse patch use at fine scales (e.g., nest-sites, roosts, loafing sites, mineral 

deposits) (Doherty et al. 2010, Walker et al. 2016). Our hull-based movement properties 

represent movement properties at coarser scales that have been associated with sage-grouse 

region use (Doherty et al. 2008, Doherty et al. 2010, Fedy et al. 2014, Walker et al. 2016). 

Behavior Mode Classification 

We used individual movement data to classify high-level and low-level behavior modes of each 

female at each relocation (Chapter 1). High-level behavior modes included those associated 

laying, incubation, brood-rearing, potential brood-rearing, migration, exploratory movements, 

and winter ranging. Low-level behavior modes were inferred from statistical clustering of 

movement properties and represent distinct movement patterns within the high-level modes. 

Low-level behavior modes might represent patch use and interpatch transit or area-restricted 

search versus central-place foraging. 

Migration high-level mode We used a statistical framework that models the net-squared 

displacement (NSD) timeseries of a movement path as a function of non-linear regression model 

parameterizations that represent different movement types (Spitz et al. 2017). We minimally 
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filtered irregular-trajectory raw data where we only removed erroneous locations defined as 

having step speeds (step length / step interval) ≥ 45 km/day. We based the 45 km/day criteria on 

our knowledge of errors identified with PTT metadata (e.g., accuracy, direction of anomalous 

displacement). The models that we considered were migration, mixed-migration, dispersal, 

resident, and nomadic. See Appendix B for background, methods, and results describing our 

migration research using data from 2018–2020. Identical migration analyses were used to 

delineate the individual winter ranging modes for 2020–2021. 

Other high-level modes We used a combination of field observation, examining PTT 

data, and migration classification to classify each hull in a female’s trajectory as laying, 

incubation, brood-rearing, potential brood-rearing, winter ranging, or unclassified. Some 

exploratory movements were identified from the migration analysis, but shorter duration 

exploratory movements were relabeled from other known modes based on results of Chapter 1. 

Additionally, uncertainty in the estimated dates of departure and arrival from NSD migration 

models caused transit movements between ranges to be initially labeled either winter or 

unclassified. Our unclassified behavior class was generally a catch-all where distinct breeding or 

winter-ranging signals were not identified (i.e., pre-laying, late summer, fall). We exclude the 

unclassified behavior mode from most plots of results to facilitate visualization of the data. Our 

exploratory high-level mode was inferred from statistical clustering of movement properties 

(Chapter 1) but represents only 1 of 7 known modes and was based on only 7 of 15 movement 

properties that we consider herein. 

Low-level statistically inferred behavior modes We identified eight statistically inferred 

behavior modes using statistical clustering (partitioning around medoids [PAM]) on a subset of 
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our movement properties (Van Moorter et al. 2010, Abrahms et al. 2017). We identified an 

exploratory mode using the clustering results and we used it to reclassify movement instances 

within the high-level modes which effectively filtered exploratory movements from modes such 

as winter or unclassified (Chapter 1). We also used the inferred modes to explore structure in the 

movement data that was not explained by vegetation, topography, seasonal modulators, high-

level known modes, and individuality. 

Landscape Condition Predictor Variables 

Predictor variables are arguably the most important component of wildlife-habitat research as 

they represent habitat characteristics, but most regression models used in wildlife-habitat 

research assume that predictor variables are measured without error. The consequences of 

violating the measured-without-error assumption include attenuation of observed habitat 

responses, amelioration of responses, or bias in estimated responses (Davies and Hutton 1975, 

Meites et al. 1984). To improve scientific inference, we checked correspondence between 

available geospatial data and our knowledge of the study area. We then developed custom 

geospatial-layer replacements if available predictor variables were deemed poor quality or had 

numerous nonsensical values. 

Water Sources Water can be an important seasonal resource for sage grouse and may 

influence distributions and seasonal space use (Donnelly et al. 2016, Donnelly et al. 2018). To 

quantify the distribution of stream channels on the landscape, we analyzed a 1/3rd arc second 

scale digital elevation model (DEM) using terrain analysis tools in the System for Automated 

Geoscientific Analyses (www.saga-gis.org, Version: 7.6.4). We performed a hydrologic analysis 

of the DEM to generate a stream channel network in our study area. Available water body data 
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layers did not correspond well with recent aerial imagery of our study area so we developed a 

raster layer delineating water bodies by combining spatial information about water body extents 

from multiple sources using a multiple criteria analysis (Gao 2009) (Appendix C). 

Fine-Scale Landscape Structures We downloaded DNRC LiDAR digital surface model 

(DSM) and digital elevation model (DEM) data from the Montana State Library site. We 

processed the DSM with 3 SAGA algorithms that highlighted 3 aspects of fine-scale features on 

the landscape. We used a terrain-surface texture algorithm to highlight tall objects (e.g., perching 

substrates). We used a vector ruggedness measure algorithm to create an index for landscape 

ruggedness which is different from topographic ruggedness because all landscape structures 

(e.g., vegetation, buildings, fences) contribute to the index values. On the open range, the 

landscape structure index captures fences, powerlines, isolated trees, and other structures which 

may be associated with risk to sage-grouse and with the influence of cattle on vegetation 

characteristics. We used a morphological protection index algorithm to quantify how enclosed 

and sheltered a unit area was due not only to terrain, but also to vegetation, buildings, or any 

other surface structures. Finally, we used the vector ruggedness measure algorithm with a 

LiDAR digital elevation model to quantify fine-scale topographic ruggedness such as stream 

banks or hoodoos. All four of our LiDAR-derived cover estimate maps were resampled to match 

the resolution of the 1/3rd arc second DEM and derivative products (Appendix E, Table 12). 

LiDAR protection, tall objects, and land surface ruggedness (structure) largely represent 

landscape conditions due to vegetation so we grouped them with vegetation variables. LiDAR 

DEM vector ruggedness represents fine-scale terrain features. 
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Vegetation Vegetation characteristics are often associated with space-use and nesting 

success of female sage-grouse (Holloran et al. 2005, Hagen et al. 2007, Dahlgren et al. 2015), but 

see (Smith et al. 2020). Available geospatial vegetation data did not correspond well with the 

ground cover in our study area, so we developed 14 vegetation related variables: normalized 

difference vegetation index (NDVI), vegetation biomass, radius of variance of vegetation 

biomass, lowland NDVI, heavy-stature shrub cover, medium-stature shrub cover, forest cover, 

sagebrush cover, barren ground cover, shelter provided by vegetation (protection), structure due 

largely to vegetation (landscape structure), tall objects due largely to trees, vegetation height, and 

radius of variance of vegetation height  (Appendix C, Table 12). We also calculated the percent 

of sagebrush cover class types from LANDFIRE data which is a measure of percent landcover 

type not a measure of actual sagebrush cover. 

Terrain Terrain has been associated with female sage-grouse use of the landscape 

(Aldridge and Boyce 2007, Aldridge et al. 2012, Walker et al. 2016, Newton et al. 2017). We 

used a 1/3 arc-second scale digital elevation model (DEM) and System for Automated 

Geoscientific Analyses (SAGA) GIS to calculate 15 terrain properties (SAGA version 2.3.2, 

www.saga-gis.org). The terrain properties were terrain ruggedness index, LiDAR DEM vector 

ruggedness measure, vector ruggedness measure, topographic position index, topographic 

wetness index, total insolation, mid-slope position, normalized height, standardized height, 

multi-resolution valley bottom flatness, morphological protection, multi-resolution ridgetop 

flatness, slope height, valley depth, and wind exposition (Appendix E, Table 12). 

 Temporal Modulators  We calculated mean daily temperature, precipitation (Oregon 

State PRISM project, Hart and Bell (2015)), and length of day as potential modulating variables 
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to account for movement property variation due to seasonality and weather influences. We also 

produced a relative-age variable to account for long term trends in the movement data and as a 

proxy variable representing individual grouse ages (Appendix E, Table 12). 

Integrating Space- and Time-Use Intensity and Landscape Condition Data 

We calculated summary statistics of all landscape conditions corresponding to the hull 

and point-patch movement scales for each sage-grouse hull or patch derived from the 

trajectories. The zonal summary statistics calculated for the hulls were the mean and coefficient 

of variation of all landscape condition pixels within each hull. We also calculated mean and CV 

for 30-m and 100-m radius patch footprints from each point-patch visited by a female. The 

various aggregation scales of the covariates were selected to help represent the multi-scale nature 

of sage-grouse habitat responses and the differential way alternate summary statistics (e.g., 

mean, median, CV) represent landscape features at different scales (Appendix E, Table 13). 

Zonal statistics calculated at the 30-m and 100-m extent were then aggregated by hull nearest 

neighbor sets of points (nearest neighbor point patches [nnpp]) using the ‘purrr’ package in R 

(Henry and Wickham 2020). For instance, the CV of heavy shrub index means from 18 100-m 

radius polygons was calculated to estimate the 100-m hull CV of heavy shrub index. An identical 

aggregation scheme was used to calculate summary statistics of the 100-m and 500-m patch-

level recursive movement estimates. An example recursive movement aggregation would be the 

mean 100-m nnpp residence time of 18 nnpp attributed to a single hull. Our aggregation scheme 

based on nearest neighbor sets allowed fine-scale patch use-intensity to be spatially and 

temporally reconciled with coarser hull movement properties and zonal statistics. 
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We chose 16 terrain characteristics as base variables for our analyses: midslope position, 

morphological protection, multi-resolution ridgetop flatness, multi-resolution valley bottom 

flatness, normalized height, proximity to channels, proximity to water bodies, slope height, solar 

insolation, standardized height, topographic position index, multi-scale topographic position 

index, topographic wetness index, valley depth, vector ruggedness measure, and wind exposition. 

We then further processed the 16 topographic base variables into 55 nnpp summary statistic 

variables (Appendix E, Table 13). We restricted vegetation base variables to 10 ground-cover 

and landscape structure characteristics: bare ground, lowland NDVI, LiDAR NDVI, sagebrush, 

medium shrubs, heavy shrubs, forest, landscape structure, landscape protection, tall objects, and 

vegetation biomass (Appendix E, Table 13). Daily temperature, precipitation, daylength, and 

relative age were also aggregated with nnpp means. 

Redundancy Analysis of Movement vs Predictor Variables  

To understand interrelationships among movement properties (e.g., hull area, visitation) 

and landscape-condition predictor variables (e.g., vegetation cover, terrain characteristics; 

Appendix E, Table 13), we used 15, 6-hour movement properties as the response variables 

(Appendix E, Table 11) in redundancy analyses (RDA) that controlled for 24 predictor variables. 

Redundancy analysis (Rao 1964) is a two-step constrained ordination procedure in which a 

multiple regression of each response variable on all explanatory variables is conducted followed 

by a principal component analysis (PCA) of the fitted values from the regressions (Legendre and 

Legendre 2012, Borcard, Gillet et al. 2018). To meet assumptions of linear regression, we 

standardized all variables and normalized highly skewed continuous variables with square root, 

logarithmic, or Box-Cox power transformations (Faraway 2005; Appendix E, Table 13) using the 
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tools of the ‘MASS’ package in R (Venables and Ripley 2002). We used logistic transformations 

to normalize highly skewed count data or highly discretized (pseudo-count) data that was first 

standardized (Faraway 2005). Collinear predictor variables can destabilize regression model 

estimates and confound interpretation so we calculated Pearson correlation coefficients and 

variance inflation factors (VIF) for all explanatory variables and sequentially eliminated 

variables exceeding user specified thresholds (Zuur et al. 2007, Braak and Šmilauer 2012, 

Legendre and Legendre 2012, Borcard et al. 2018). Collinearities among temporal modulators 

were easier to interpret, so we set less stringent thresholds for temporal modulators than for 

terrain and vegetation variables. We specified r > 0.85 and VIF > 4 for temporal modulators and 

r > 0.6 and VIF > 2.5 for the terrain and vegetation variable sets. Correlation and VIF-based 

variable elimination was accomplished with an R script incorporating the auto_cor() and 

auto_VIF() function which allowed us to prioritize keeping variables that we could easiest 

interpret from sets of collinear variables (Benito 2021). 

To enforce parsimony in our RDA models, we performed a forward selection routine on 

3 of the 4 sets of predictor variables: vegetation, topography, and seasonal modulators (Table 3). 

Forward selection is the standard variable selection method used with RDA (Zuur, Ieno et al. 

2007, Legendre and Legendre 2012, Borcard, Gillet et al. 2018) and was executed using the 

forward.sel() function of packfor (Dray, Legendre et al. 2007, Blanchet, Legendre et al. 2008). 

The R2
adj stopping criteria that constrained inclusion of explanatory variables in the RDA models 

was set at the R2
adj of a global RDA model fitted with all candidate variables in a predictor set 

(e.g., vegetation matrix, topography matrix; Borcard et al. (2018)). All other forward.sel() 

parameters were left at default values (e.g., α = 0.05 ). Known behavior mode and sage-grouse 
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ID were the only variables initially included within the fourth predictor set (behavior set). We 

later added inferred modes to examine residual structure leftover after accounting for data-driven 

modes based on some of the same movement property data. No forward selection routine was 

performed for the behavior set because the known mode and individual ID variables were critical 

for our analysis regardless of variable-and-model selection results. Our known-mode factor 

levels were laying, incubating, brood-rearing, potential brood-rearing, exploratory movement, 

and winter ranging; the sage-grouse ID factor had 74 levels. 

We implemented our analysis in two phases. First, we used a variance partitioning 

approach to quantify the movement-property variance explained by 1) vegetation, 2) topography, 

3) seasonal modulators, and 4) behavior modes. We further examined the influence of our 

behavior mode factor with and without an additional factor of sage-grouse identification. The 

sage-grouse ID factor allowed us to quantify variability in movement characteristics that is 

explained by individual-based movement tendencies unassociated with our suite of covariates. 

Sage-grouse ID accounted for a substantial proportion of the variance explained (9.0%) so we 

included the factor in the behavior-mode matrix to account for within-individual relatedness of 

movement observations. In the second phase, we performed 6 partial RDA analyses using each 

predictor-variable set, in turn, as the constraint matrix. Partial RDA analyses allowed us to 

quantify variation in the movement variables that was solely explained by each focal landscape-

condition set (e.g., vegetation, topography), after accounting for variation jointly explained by 

compliment landscape-condition sets. The six partial RDA analyses were: vegetation, 

topography, temporal modulators, behavior modes, sage-grouse ID, and a final partial RDA 

using partitioning around medoids (PAM) movement-mode cluster classes. Separate partial 
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RDAs for the behavior mode and ID factors facilitated interpretation of the respective influence 

of known behavior mode and individual by isolating the variance explained by each factor and 

by simplifying the triplots used to summarize results. Likewise, our partial RDA with the PAM 

inferred-mode constraint was used to aid interpretation of our statistically inferred behavior 

modes by isolating the variation explained by the PAM factor and helping link the factor levels 

to biological behavior modes. Our PAM factor analysis is related to that of Chapter 1 but added 

here in Chapter 2 to add context to our results. 

We used an auxiliary principal component analysis (PCA) to compare with our partial 

RDA models. Our PCA presents the overall structures in our data for comparison to structures 

present in our partial RDAs. We included all 15 response variables plus use-intensity (h-UI), 

mean residence time (RTmu), and CV of mean residence time (RTmu-cov) to allow comparison 

with hull-enclosed points (h-I), total residence time (RT) and CV of total residence time (RT-

cov) (Appendix E, Table 11). We also analyzed and plotted movement versus landscape-

condition associations based on the first 2 PCA axes using the seasonal modulator, topography, 

and vegetation variables that ranked highest for variation explained in our RDA models. We 

included 12 landscape condition variables: the first- and second-ranked temporal modulator 

variables and the top five variables from each of the terrain and vegetation predictor sets (see 

Table 3). 

Results 

Sage-grouse Monitoring 

We collected 192,640 geographic coordinates of 86 female sage-grouse during 2018-04-

24 – 2022-04-14 which encompassed 4 complete annual cycles of sage-grouse. The median 
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number and interquartile range (IQR) of locations per female in the complete dataset was 1,410 

(IQR = 2,956). After resampling trajectories to 6-hr intervals and removing individuals with 

inadequate relocation histories, our analysis used 110,360 relocations of 74 females. The median 

number of locations per female for the RDA analyses was 1156 (IQR = 1968). 

Laying, incubating, brooding, potential brooding, winter ranging, and exploratory 

behaviors were attributed to female sage-grouse relocations whenever these behaviors were 

known from field observations or migration/cluster analysis for the winter ranging and 

exploratory mode. The median duration over which brood-rearing was confirmed was 41.4 days 

(IQR = 31.5, n = 19). Sage-grouse relocations with an unconfirmed behavior state were allocated 

to a catchall ‘unknown’ behavior category. The median number of relocations per individual 

attributed to laying was 48 (IQR = 58, n = 69), median locations for incubation 99 (IQR = 112, n 

= 71), median locations for brooding was 143 (IQR = 79, n = 19), potential brooding 54 (IQR = 

11, n = 30), winter range 553 (IQR = 486, n = 43), exploring 72 (IQR = 53.8, n = 4), and 642 

(IQR = 1074, n = 74) for the ‘unknown’ category. After reclassification of modes using cluster 

analysis, the median number of relocations per individual attributed to laying was 48 (IQR = 58, 

n = 69), median locations for incubation 99 (IQR = 112, n = 71), median locations for brooding 

was 143 (IQR = 79, n = 19), potential brooding 54 (IQR = 11, n = 30), winter range 442 (IQR = 

442, n = 43), exploring 121 (IQR = 126, n = 59), and 585 (IQR = 944, n = 74) for the ‘unknown’ 

category. All modes were included in all analyses, but the unknown category was the least well 

discriminated so was excluded it from all plots to improve visualization of the results. 
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Predictor/Model Selection 

Variance inflation factor screening and model selection resulted in 4 seasonal modulator, 

10 vegetation, and 10 topography variables at various scales (e.g., hull, point-patch) being 

included in our RDA models (Table 3). The 4 seasonal modulator variables were precipitation, 

temperature, length of day, and relative age of the female (Table 3). The 10 topography variables 

were derived from 9 base variables: LiDAR vector ruggedness measure (VRM), midslope 

position, normalized height, proximity to channels, proximity to water bodies, LiDAR VRM 

radius of variance (RoV), proximity to water RoV, topographic wetness index, and vector 

ruggedness measure (Table 3). The 10 vegetation covariates were derived from 8 base variables: 

barren, forest, height, LANDFIRE sage, lowland NDVI, sage, vegetation, and vegetation RoV 

(Table 3). 

RDA Variance Partitioning  

Variance partitioning of behavior modes without the sage-grouse ID variable indicated 

that the variance in movement properties explained by each of the 4 explanatory matrices was of 

similar magnitude (Table 4); behavior mode explained the most overall variation in the 

movement data (R2
adj

 = 0.311) and vegetation explained the least (R2 
adj  = 0.148). Much of the 

overall variability explained by a given predictor set was shared among the sets (Table 4). For 

example, when not considering the contribution of the vegetation, modulators, and behavior-only 

matrices, the R2
adj for topography was 0.165 (overall variation) but after removing their 

contribution (shared variation) the R2
adj

 dropped to 0.035 (pure variation). The analogous 

situation for behavior mode resulted in a drop from 0.312 (overall) to 0.086 (pure). The 

vegetation and seasonal modulator predictor sets exhibited similar differences between overall 
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and pure variance explained (Table 4, Figure 2). All 4 predictor sets together accounted for ~ 

40.9% (R2
adj

 = 0.409) of the variability present in the response variables (i.e., space- and time-use 

intensity properties). 

The addition of a sage-grouse ID indicator factor to the behavior matrix (behavior/ID 

predictor set) resulted in a combined R2
adj for the 4 predictor sets of 50% which was an increase 

of 9.1% (Table 4, Figure 2). The addition of a variable can alter the relative amount of pure 

explained variation attributed to each variable set. Indeed, 1.2, 0.7, and 1.6% of the pure 

variation explained by the topography, vegetation, or modulator predictor sets was reattributed to 

shared variation between the behavior/ID matrix and the other 3 (compliment) matrices (Table 4, 

Figure 2). 

The addition of our PAM class factor to the behavior/ID predictor set resulted in a 

combined R2
adj for the 4 predictor sets of 62% which was a further increase of 12% (Figure 2). 

The behavior/ID/PAM matrix had R2
adj = 0.296 which was a combination of movement variation 

newly explained and variation previously explained by the topography, vegetation, and 

modulator predictor sets. However, our interest in the PAM classes was not to identify a ‘source’ 

of movement variation due to the PAM classes but to examine how the PAM factor organizes 

gradients of movement variation not due to topography, vegetation, seasonal modulators, known 

behaviors, or individual variability. 

Temporal-Modulator Partial RDA 

Our partial RDA model which used daily temperature, daily precipitation, length of the 

day and relative age of female grouse as the predictor matrix had a 1st constrained ordination axis 

(RDA1) which explained 2.5% of the variation in the movement data, after controlling for all 
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other covariates (total-minus-conditioned variance). The 2nd constrained axis (RDA2) only 

explained 0.6% of the total-minus-conditioned variance. The 1st unconstrained axis accounted for 

25.7% of the total-minus-conditioned variability which shows that there was substantial structure 

not captured by the constraint (predictor matrix) or conditioning (covariable matrix) variables. 

Our seasonal modulator triplot which employed the 1st and 2nd constrained axes (RDA1 

and RDA2) indicated that the standard deviation of movement speeds for a nearest neighbor 

hullset was largely organizing the dispersion of observations along the first axis. The standard 

deviation of movement speeds in a hullset (h-S-sd) was strongly negatively correlated with the 

length of day, precipitation, and temperature, which therefore also structure the dispersion of 

observations along the first axis. Hull-enclosed points, 100-m patch residence time, variability 

(CV) in 100-m patch residence time, and distance to first nest largely organized dispersion of 

observations along the 2nd axis. Temperature and day length were the predictor variables most 

strongly associated with the 2nd axis. 

Female age was weaky represented in the triplot indicating that use-intensity is driven 

mostly by factors other than female age. Day length, and precipitation had a strong-positive 

correlation with each other and a strong-negative correlation with time-to-return, hull area, and 

standard deviation of movement speeds indicating that movement properties and precipitation 

vary seasonally. Day length was also strong-positive correlated with 100-m patch revisitation 

and the duration of visitation to a hull indicating that high revisitation to 100-m patches and 

average duration of hull visits are highest during the longest days. Temperature and day length 

were only moderately positively correlated indicating that they are relevant to sage-grouse 

movement ecology in unique ways despite being highly correlated in an absolute sense. 
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Temperature was strongly negatively correlated with the movement activity related variables 

(i.e., speed, variation in speed, area) and time to return indicating that movement activity is 

greater during the winter and there is seasonal fidelity to winter ranging areas (see Figure 3). 

Duration of hull visits, 100-m patch revisitation, residence time, hull-enclosed points, and CV of 

100-m patch residence time were strongly negatively correlated with distance to first nest 

indicating that these movement properties are elevated near nesting areas. 

Vegetation Partial RDA 

The 1st and 2nd constrained axes from our vegetation-constrained partial RDA explained 

1.5 and 0.7% of the total-minus-conditioned variability in the movement data, respectively. The 

1st constrained axis (RDA1) was most strongly associated with speed-SD, speed, CV of 100-m 

residence time, hull area, and CV of 500-m residence time. The 2nd constrained axis largely 

represented hull-enclosed points, hull revisits, residence time, 100-m revisits, distance to first 

nest, and time-to-return to 100-m patches. The 1st unconstrained axis (not shown) accounted for 

25.8% of the total-minus-conditioned variability which indicates substantial structure not 

captured by the constraint or conditioning variables. 

The vegetation-constrained triplot indicated that the movement activity and space-use 

variables (speed, speed-SD, area) had a strong-positive correlation with each other but had a 

moderate-negative correlation with residence time (Figure 4). Movement activity variables were 

uncorrelated with use-intensity variables such as 100-m revisits, hull-revisits, and hull-enclosed 

points indicating that movement activity and use-intensity variables represent separate 

phenomenon in the context of the vegetation-constrained partial analysis. Variability in residence 

time at both the 100- and 500-m scale were positively correlated with movement activity 



94 
 
variables indicating that the RDA1 axis represents various facets of movement activity, space 

use, and resource selection strength.  Hull-enclosed points, hull revisits, 100-m revisits, and 

residence time had a negative correlation with net displacement away from first nest (ND-nest) 

and 100-m time-to-return. Therefore, use-intensity variables hull-enclosed points, hull revisits, 

100-m revisits, and residence time tend to increase as distance from first nest and time-to-return 

decrease indicating that the RDA2 axis represents phenomena related to breeding ecology. 

Movement-vegetation relationships evident from RDA1 of our triplot indicate a positive 

correlation among bare ground, coefficient of determination (rCD) of vegetation biomass, 

vegetation biomass, radius of variance (RoV) of vegetation biomass, and CV of sage. These 5 

vegetation variables had a strong-positive correlation with CV of residence time, speed-SD, 

speed, area and CV of 500-m residence time. Therefore, variability in fine-grain sage and fine-

grain NDVI related variables tend to increase as various facets of movement activity, space use, 

and resource selection strength increase. 

Hull forest and hull LANDFIRE sagebrush were positively correlated with 100-m 

revisits, hull-revisits, hull-enclosed points, and residence time indicating that forest cover 

increases as use-intensity increases. In contrast, vegetation height and fine-scale sagebrush cover 

were negatively correlated with the use-intensity variables but positively correlated with distance 

from first nest and time-to-return indicating that ecological relationships with vegetation height, 

fine-scale sagebrush cover, forest and LANDFIRE sagebrush vary as a function of distance from 

nesting areas. Space- and time-use intensity tends to decrease with increasing values of 

vegetation height and sagebrush cover but increases with increasing vegetation biomass and 

radius of variance of vegetation biomass. 
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Terrain Partial RDA 

The 1st and 2nd constrained axes from our topography-constrained partial RDA explained 

4.3% and 5.5% of the total-minus-conditioned variability in the movement data, respectively. 

The 1st constrained axis largely represented speed-SD, speed, area, residence time, CV of 

residence time, CV of 500-m time-to-return, and 100-m revisits. The 2nd constrained axis was 

most strongly associated with CV of time-to-return, number of hull-enclosed points, hull 

eccentricity, revisits, and hull revisits. The 1st unconstrained axis accounted for 25.2% of the 

total-minus-conditioned variability which shows that there was substantial structure not captured 

by the constraint or conditioning variables. 

The topography-constrained triplot showed that speed, speed-SD, area, CV of 100-m 

residence time, CV of 500-m residence time, time-to-return, CV of time-to-return, and CV of 

500-m time-to-return were highly positively correlated with each other but had a strong-negative 

correlation with residence time, 100-m revisits, duration, and eccentricity (Figure 5). Hull 

revisits, and hull-enclosed points had a strong-positive correlation between themselves and were 

negatively correlated with eccentricity. 

Variability (CV) of topographic wetness index, and variability of normalized height were 

the predictor variables most strongly associated with speed, speed-SD, area, CV of 500-m 

residence time, time-to-return, and CV of 500-m time-to-return. CV of 30-m vector ruggedness 

measure and water body RoV were strong-positive correlated with hull enclosed points, hull 

revisits, and CV of time-to-return, negatively correlated with eccentricity, but uncorrelated with 

most other variables. 
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Behavior Partial RDA 

The 1st and 2nd constrained axes from our behavior-constrained partial RDA explained 

11.1% and 1.9% of the total-minus-conditioned variability in the movement data, respectively. 

The 1st constrained axis was most strongly associated with displacement from first nest (ND-

nest), time-to-return, area, speed, hull-enclosed points, 100-m residence time, 100-m revisits, and 

duration. The 2nd constrained axis was most strongly associated with speed, ND-nest, 100-m 

variability in residence time, and 500-m variability in residence time. The 1st unconstrained axis 

accounted for 22.6% of the total-minus-conditioned variability which shows that there was 

substantial structure not captured by the constraint or conditioning variables. 

The behavior-constrained triplot illustrated discrimination among the centroids of the 

different movement types (Figure 6). Incubating, laying and potential-brood centroids had higher 

than average 100-m residence time while the exploratory movement centroid is much lower than 

average. The relationship between the behavior centroids and area was reversed because area and 

100-m patch residence time are negatively correlated: exploratory movement was higher than 

average and laying, incubating, and potential brood were lower than average. The winter range, 

brood, and unclassified centroids are close to the average of the movement activity variables. 

The exploring and winter range centroids had higher than average ND-nest, and the laying 

centroid had lower than average ND-nest. Revisits (100-m) were highest for laying and lowest 

for exploring, brood, and winter range. Hull-enclosed points were highest for laying and 

potential brood and lowest for exploring. 
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Individual ID Partial RDA 

The 1st and 2nd constrained axes from our ID-constrained partial RDA explained 9% and 

2.4% of the total-minus-conditioned variability in the movement data, respectively. The ID-

constrained triplot illustrated discrimination among the centroids of the individual sage-grouse 

(Figure 7 & Figure 8). The 1st constrained axis was strongly associated with hull-revisits, 

enclosed points, 100-m revisits, residence time, and time-to-return. The 2nd constrained axis was 

most strongly associated with displacement from first nest, duration, and variability in 100-m 

time-to-return. As indicated by their short arrows, individual ID is primarily explaining 

variability in space- and time-use intensity properties other than speed, speed SD, area, CV of 

100-m residence time, and CV of 500-m residence time. 

 We used our individual ID partial RDA to examine residual structure in the movement 

data after accounting for the temporal modulator, topography, vegetation, and behavior/ID 

predictor sets. To examine residual structure in the data we produced a plot of the response 

variables using the first two unconstrained axes (PC1 & PC2) from the RDA model. The 1st and 

2nd unconstrained axis of our PC1 and PC2 plot (Figure 9) represents 22.4 and 13.6% of the 

total-minus-conditioned variation in the movement data. Hull-enclosed points, 100-m revisits, 

residence time, time-to-return, and CV of 500-m time-to-return contributed most to the first axis. 

CV of residence time, hull-enclosed points, CV of 500-m residence time, and area contributed 

most to the second axis. Movement activity and use-intensity variables were negatively 

correlated. 
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PAM Classes Partial RDA 

The 1st and 2nd constrained axes from our partitioning around medoids (PAM) 

constrained partial RDA explained 22.7% and 7.1% of the total-minus-conditioned variability in 

the movement data, respectively. The PAM-constrained triplot illustrated clear discrimination 

among the centroids of the inferred movement clusters (Figure 10 & Figure 11). The 1st 

constrained axis was strongly associated with residence time, hull-revisits, hull-enclosed points, 

time-to-return, and variability (CV) in 500-m time-to-return. The 2nd constrained axis was 

strongly associated with hull revisits, hull duration, and CV of 500-m residence time. Residence 

time, revisits, hull revisits, hull-enclosed points, and CV of time-to-return were positively 

correlated among themselves and negatively correlated with time-to-return, area, CV of 500-m 

residence time, and CV of 500-m time-to-return. Net displacement from nest was negatively 

correlated with residence time, 100-m revisits, hull revisits, hull-enclosed points, and CV of 100-

m time-to-return. 

To examine residual structure in the data after adding the PAM factor we produced a plot 

of the response variables using the first two unconstrained axes (PC1 & PC2) from the PAM 

classes partial RDA model. The 1st and 2nd unconstrained axis of our PC1 and PC2 plot (Figure 

12) represents 12.1 and 11% of the total-minus-conditioned variation in the movement data. 

Hull-enclosed points, hull duration, and hull eccentricity contribute most to the first axis. Speed, 

speed-SD, CV of 100-m residence time, CV of 500-m residence time, and area contribute most 

to the second axis. 
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Principal Component Analysis 

The 1st and 2nd axes from our PCA analysis represent 44.4% and 14.7% of the variability 

in the seventeen space- and time-use intensity variables. Note that two extra ‘response’ variables 

(RTmu, RTmu-cov) were included in the PCA (Appendix E, Table 10). Hull use-intensity (h-

UI), hull area, residence time, revisits, and time-to-return were strongly associated with the first 

axis and hull-enclosed points, hull revisits, and variability (CV) of residence time were strongly 

associated with the second axis. 

In our PCA-based PC1 and PC2 biplot, hull use-intensity, residence time, and revisits had 

a strong positive correlation with each other and a strong negative correlation with ND-nest and 

time-to-return. Hull enclosed points also had a strong negative correlation with time-to-return 

and ND-nest. Hull area, speed, speed-SD, and CV of 500-m residence time had a strong positive 

correlation with each other and a strong-negative correlation with hull use-intensity and 

residence time. Mean residence time (RTmu) and total residence time (RT) had a weak-positive 

correlation which was also true for CV of total residence time (RT-cov) and CV of mean 

residence time (RTmu-cov). 

In general, the 12 supplementary environmental variables included in our PCA analysis 

were not well represented in our PCA-based PC1 and PC2 biplot. Temperature, day length, 

variability (rCD) of vegetation biomass, CV of topographic wetness index, CV of normalized 

height, and CV of vector ruggedness index were the most well represented. Temperature and day 

length were positively correlated with residence time, hull use-intensity and revisits, and 

negatively correlated with time-to-return, ND-nest, CV of residence time, CV of 500-m time-to-

return, and area. Variability (rCD) of vegetation biomass, variability of topographic wetness 

index, variability of normalized height, and variability of vector ruggedness index were 
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positively correlated with area, variability of residence time, and variability of 500-m time-to-

return. The variables representing variation of used landscape conditions were negatively 

correlated with hull use-intensity, residence time, 100-m revisits, and duration. Therefore, 

variability of used landscape conditions was generally positively associated with movement 

activity, space use, and resource selection related variables and negatively associated with use-

intensity related variables. 

The relationships among the movement properties and between the movement properties 

and the supplementary environmental variables in our PCA analysis generally corresponded to 

what we observed with our more rigorous (direct gradient analysis) RDA analyses. However, the 

dispersion of individual hull ‘sites’ relative to behavior/phenology modes exhibited a much 

clearer pattern in our PCA analysis where we were not removing other sources of variation 

(partial RDAs) in the movement properties (Figure 13). Incubation hulls were below average 

with respect to both the PC1 and PC2 axes and were well discriminated. Laying hulls occupied 

the boundary between the incubation cloud of hulls and brood or potential-brood cloud of hulls. 

Winter range hulls were above averagee relative to the PC1 axis and unclassified hulls were 

interspersed among all known behavior modes (not shown). Exploratory hulls were always 

above average with respect to the PC1 axis but often (denser point cloud) below average with 

respect to the PC2 axis. 

Discussion 

If sage-grouse movements and space- and time-use are primarily driven by searching and 

preference for certain landscape conditions, then a large proportion of movement-property 

variability should be explained by landscape conditions such as vegetation cover. An alternative 
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possibility is that sage-grouse movements and space use are largely determined by innate or 

learned behavioral patterns or seasonal fidelity to geographic areas and may have only weak 

response to differential terrain, hydrologic characteristics, surrounding vegetation, or weather. 

Hard wired space- and time-use would make population-level associations between movement 

properties and landscape conditions weak and inconsistent among individual sage-grouse. Our 

results suggest that measurable and manageable vegetation conditions are less influential on 

movement patterns than terrain conditions or seasonal modulator variables such as day length or 

temperature. We also observed substantial individual-level variability in movement patterns 

which further suggest that difficult-to-measure behavioral traits or unobserved experience may 

structure sage-grouse space use and use-intensity more than differential vegetation conditions in 

our study area. 

Foundational Relationships among Space- and Time-Use Intensity 
Properties 

Recent research investigating the relationships among home-range size (area), resource 

selection, residence time, time-to-return, and landscape-element arrangement has resulted in a 

theoretical framework for reconciling these movement-related phenomena (Van Moorter et al. 

2016). We have quantified variables similar to those considered by Van Moorter et al. (2016) 

and can examine our results in the light of their framework. Shorter residence time and longer 

time-to-return within a home range should be associated with increased home range size which is 

then associated with greater variability in residence time and time-to-return. Our constrained-axis 

topography and vegetation triplots indicated strong support for those expected relationships 

among movement characteristics except that variability of 100-m time-to-return (TtoR-cov) was 

uncorrelated with area in both cases. Other triplots were mostly consistent with theoretical 
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predictions where 100-m time-to-return, variability of 500-m time-to-return, and variability of 

500-m residence time had consistent positive correlations with area. As expected, residence time 

was always negatively correlated with area; more time spent in patches equates to less time spent 

maintaining a large home-range. Furthermore, all the aformentioned relationships, except with 

TtoR-cov, were still supported after we added grouse ID and then statistically inferred low-level 

behavior modes. Expected relationships (TtoR-cov excluded) were also consistent with the 

results of our exploratory PCA analysis.  

Inconsistent with Van Moorter et al. (2016), the relationship between TtoR-cov and area 

showed a negative correlation in all plots including our unconstrained axis RDA plots and our 

PCA-based biplot. This discrepancy may have resulted from scale-dependent relationships 

between TtoR-cov and area. Theoretically, variability in residence time and time-to-return are 

positively correlated with the strength of 3rd order habitat selection (Johnson 1980) which is 

positively correlated with home-range area (Van Moorter et al. 2016). Indeed, at the 500-m 

extent, increased variability in residence time and time-to-return was positively correlated with 

hull area which may indicate decreased consistency in use of areas within a hull due to increased 

3rd order selection. In contrast, increased TtoR-cov for female sage-grouse appeared to be a result 

of more intensive use of the broader area which provided greater opportunity for differential 

visitation to patches within a hull. For instance, hulls with many enclosed points (i.e., high use-

intensity) may contain habitat patches used for laying, incubating, and brood rearing in addition 

to rarely visited patches encountered during taxis or searching, which would result in high 

variability of 100-m time-to-return. Additionally, increasing the extent by which recursive 

movement properties are calcualted (e.g., 500-m radius) has the effect of smoothing variability in 
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movements because greater displacements are required to exit patches and to be counted as a 

separate visits. Greater magnitude movements, associated with large hulls, will then be necessary 

to exit patches and create variability in time-to-return. Van Moorter et al. (2016) also found that 

their proposed relationship between variability of time-to-return and home-range area was scale 

sensitive. The results of Van Moorter et al. (2016) partially motivated our inclusion of multiple 

extents (i.e., 100-m, 500-m) of variability of time-to-return in our analyses so we were not 

surprised by our results. 

The evident scale sensitivity of the relationship between TtoR-cov and other movement 

properties warrants further research, but the negative association between TtoR-cov and area 

may suggest multi-season revisitation patterns at fine spatial scales. For example, TtoR-cov 

tended to increase as displacement from first nest decreased and this pattern held in all of our 

partial RDA analyses as well as the PCA analysis. During laying and incubation 100-m time-to-

return for the nest site is very low but periphery patches can have high to moderate time to 

return, partially due to seasonal revisitation, which results in high variability in time-to-return for 

smaller breeding-related home ranges. The variability in 100-m time-to-return and distance to 

first nest relationship may also be driven by exploratory movements which tend to have 

consistently large (low variability) values of 100-m time-to-return and large distances from 

nesting regions.  

The importance of habitat selection and associated landscape-element arrangement 

proposed by Van Moorter et al. (2016) may help explain why our topography and vegetation 

triplots most strongly conformed to theoretical expectations. Each of our partial RDAs represent 

the variation explained by a variable set after removing the contribution of the compliment sets 
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of variables (e.g., movement ~ topography | vegetation, modulators, behavior/ID). Movement, 

home-range size, and habitat selection relationships are expected to play out in both geographic 

and environmental space (Mueller and Fagan 2008, Van Moorter et al. 2013, Van Moorter et al. 

2016) where topography and vegetation represent environmental space.  

Our multivariate movement-integrated RDA that incorporates mean and variability (i.e., 

CV, rCD, RoV) summary statistics of resources within short-term home ranges can aid 

interpretation of how and why selection occurs on the landscape. In our topography triplot, 

variability of 500-m residence time, variability of 500-m time-to-return and variability of 100-m 

residence time were positively correlated with variability of normalized height, variability 

topographic wetness index, and radius of variance of fine-scale landcape ruggedness. We 

attribute the correspondance between variation in the movement properties and variation in the 

terrain properties as a signal of selection for those aspects of the landscape. Increased within-hull 

variability in residence time and time-to-return among habitat patches is expected as 3rd order 

habitat-selection strength increases (Van Moorter et al. 2016). Increased selection strength would 

then account for increased variability in landscape conditions among visited locations (patches), 

provided there is sufficient heterogeneity (i.e., low spatial autocorrelation) inside the hull. In 

other words, profitable patches have high residence time and low time-to-return and less 

desirable patches have low residence time and high time-to-return. If these two types of visited 

patches within a hull have divergent values for a predictor variable, then the variability will be 

high for both the movement characteristics and the predictor variables. The reader should note 

that we did not explicitly account for spatial autocorrelation but expect that spatial 

autocorrelation decreases and therefore landscape heterogeneity increases as the magnitude of 
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movements increase (e.g., increased hull area). The positive correlation that we observed 

between variability of the aforementioned topographic variables and area is likely to be a 

function of the strength of 3rd order habitat selection but modulated by autocorrelation of 

landscape elements (Van Moorter et al. 2016). Furthermore, decreasing variability of landscape 

conditions with increasing residence time and decreasing area may indicate decreased 3rd order 

selection and increased 2nd order selection (Van Moorter et al. 2016). Incubating sage-grouse 

exhibited high residence time, small home ranges, and negative associations with variability of 

landscape conditions within short-term home ranges, and the opposite was true of winter ranging 

females. Therefore, resource selection appears to operate differently as a function of behavior 

modes and seasonality. Simplistic assumptions made when using resource selection functions are 

unlikely to account for spatial, temporal, and behavior fluctuations within the selection process 

of sage-grouse. Our movement-integrated study design was flexible in evaluating the links 

among space use, movement properties, and resource selection without incorporating user-

defined availability constraints. Gradients of use-intensity were instead generated by the 

movement process of individual females. 

Our partial RDA analyses indicated that the correlation among area (i.e., short-term home 

range size), speed, and speed-SD was positive and strong. Increased variability in travel speeds 

may be due to increased diversity of low-order behavior modes such as taxis, searching, and 

foraging in larger hulls (e.g., winter ranging hulls). Supporting this premise is the fact that 

variability of 100-m residence time was positively correlated with speed, speed-SD, and area in 

our vegetation and topography constrained-axis triplots and our PCA. Understanding ecological 
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controls on differential hull areas appears to be largely redundant with understanding drivers of 

differential speed or speed-SD at the 6-hour temporal scale we examined. 

Area was inversely related to the use-intensity related variables hull-enclosed points, use-

intensity, revisits, and residence time which indicates consistent and interpretable relationships 

between space- and time-use. All triplots that we examined indicated a lack of correlation 

between hull area and hull revisits which demonstrates that similar space-use extents can result 

from different degrees of visitation to an area. The lack of correspondence between hull-revisits 

and hull-area indicates the importance of these variables for inferring alternate behavioral 

mechanisms that result in similar space-use extents. For example, incubation-hull areas are 

constrained by a central-place foraging strategy (Stephens 1986), but incubation hulls did not 

necessarily incur numerous revisits by a female. Differences between sage-grouse nesting and 

brood-rearing habitats (Peterson 1970, Hagen et al. 2007, Dzialak et al. 2011, Walker et al. 2016) 

indicate that female sage-grouse tend to leave the nest zone (incubation hull) after a failed or 

successful nest (Berry and Eng 1985, Fedy et al. 2012). Despite well documented nesting region 

fidelity (Berry and Eng 1985, Fischer et al. 1993, Holloran et al. 2005, Gerber et al. 2019), 

neither nesting zone (yearly nesting home range) nor nest site fidelity (nest reuse) are thought to 

be common (Schroeder et al. 1999). Indeed, we observed that upon nesting cessation, females 

tended to use areas that did not overlap nest sites or zones which is consistent with research 

examing the distance between nest sites and early brood rearing locations (Connelly et al. 

2011d). Therefore, characteristic nesting-hull areas result from high use-intensity for a limited 

duration but high revisitation is atypical after nesting ends. In contrast, movement in a zone of 

attractive brood-rearing habitat or nesting-region habitat may result in hulls with a comparable 
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area but that are generated by a different foraging strategy (e.g., area-restricted search) where the 

area is used repeatedly within, and possibly among, seasons. Our behavior triplot supports this 

supposition by illustrating that revisits at the hull extent were above average for the potential 

brood and laying behavior modes. 

We found a discrepancy between broods and potential broods which highlights the 

importance of defining ecologically valid grouping factors in research designs and statistical 

analyses. Potential broods were more like the incubating mode which exhibited elevated 

residence time, lower area, and lower distance to first nest relative to overall averages. 

Confirmed broods were close to average with respect to all movement properties. We attribute 

the discrepancy between movement properties for broods and potential broods to the fact that we 

defined potential broods as all locations up to 2 weeks post hatch. Many hatched-nest females 

(brood status unknown) would have broods with young chicks during those two weeks and 

would have more restricted average movements than the movements of brood-rearing females 

(status known) averaged over six weeks; broods gain mobility and can shift to alternate habitats 

with time (Peterson 1970, Wallestad 1971, Dzialak et al. 2011, Fedy et al. 2012). We did not 

define early and late brood rearing periods because broods did not make dramatic shifts 

(Wallestad and Pyrah 1974, Dzialak et al. 2011) to alternate regions during the ≤ 6-week period 

that we were able to monitor broods after hatch. Our observations and results suggest that brood 

rearing movement behavior in our study area changes in a gradual manner that would not be well 

represented by a subjective early and late brood-rearing factor. 

None of our constrained-axes triplots indicated that eccentricity was associated with area, 

speed, and speed-SD. Despite eccentricity values increasing with the directionality of 



108 
 
movements, they do not necessarily correspond to increased speeds, variability in speeds, or hull-

areas. For instance, we observed (unpublished data) that eccentricity values were highest for 

large taxis movements as well as recursive travel between 2 patches, such as nests and incubation 

break sites (Dudko et al. 2019) or roosts and daytime foraging/loafing sites (Dunn and Braun 

1986b). Eccentricity values are high in both scenarios but extensive directional movements 

resulted in large hulls, and to-and-fro movements between a nest site and a foraging site 

produced relatively small hulls. Therefore, eccentricity seems to provide additional context by 

which to infer behavioral mechanisms that dictate space-use extents. Eccentricty was poorly 

represented in all our triplots except the topography triplot (moderately-well represented) but 

when we added the PAM factor to our RDA the residual structure (PC1 & PC2) plot indicated a 

strong gradient of variation due to eccentricity. Therefore, we demonstrated that detailed study 

designs and analyses which recognize the hazards of excluding important grouping factors or 

variables are important for valid inference. When adequately parsed, eccentricity of short-term 

home ranges is a relatively novel and useful metric for understanding low-level sage-grouse 

behaviors. 

Importance of Accounting for Behavior Modes 

In addition to examining interrelationships between movement characteristics and how 

temporal, spatial, and individual-level factors affect these characteristics, our explicit accounting 

of behavior modes also promotes a mechanistic understanding of the movement process. The 7 

high-level behavior modes that we included in the RDA analyses accounted for 31.2% overall 

variation in movement properties, so movement patterns vary substantially among phenological 

stages. However, only 8.5% pure variation was explained by the high-level modes which 
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indicates that phenological stages are tied to changes in other factors such as day length, terrain 

characteristics and vegetation. Therefore, it is important to account for behavior modes and 

thereby evaluate relationships between habitat responses and landscape conditions within 

individually defined behavior modes. The addition of the 8 statistically inferred behavior modes 

to our behavior/phenology/ID matrix explained an additional 9.0% of the variability in the 

movement data, further illustrating that substantial structure remained after accounting for 

vegetation, topography, sage-grouse high-level behavior modes, and individuality. 

Seasonality of Movements and Space Use 

Consistent with the literature, our results indicate that sage-grouse exhibit highly variable 

seasonal movements among populations or subpopulations and among individuals (Eng and 

Schladweiler 1972, Berry and Eng 1985, Connelly et al. 2000b, Fedy et al. 2012, Orning and 

Young 2016) and that sage-grouse congregate on, and maintain fidelity to, large winter ranges 

(Eng and Schladweiler 1972, Berry and Eng 1985, Connelly et al. 2011a). Our seasonal 

modulator RDA indicated that area had a strong-negative correlation with day length which was 

itself positively correlated with temperature and precipitation. An increase of hull area with 

decreasing daylength and temperature is consistent with previous research indicating that sage-

grouse movement activity increases as summer progresses into fall and can be maximal during 

autumn-to-winter and winter-to-spring seasonal range transitions (Dunn and Braun 1986a, 

Fischer et al. 1996, Bruce et al. 2011, Fedy et al. 2012, Caudill et al. 2015, Dahlgren et al. 2016b, 

Dinkins et al. 2017). Previous research is inconclusive regarding increased movement activity 

and home range sizes during winter (Hagen 1999, Orning and Young 2016), but our detailed 

movement analysis strongly indicates that movements and associated home ranges in our study 
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area are larger during winter. Contributing to the evidence that movements and therefore ranges 

are more extensive during winter is the fact that most exploratory movements occurred during 

winter months. Therefore, baseline movement activity appears to be elevated during winter and 

is accentuated by exploratory type movements.  

Modulation of Space- and Time-Use Intensity Properties by Vegetation 

Our vegetation RDA model was able to illustrate multiple facets of seasonal wildlife 

habitat relationships. Sage-grouse in our study area generally use areas with less large stature 

shrubs and trees, especially during lekking related movements, late summer, fall, and winter. 

Some individuals used moderately to highly wooded areas (i.e., Rocky Mountain juniper) with a 

sagebrush component during laying, incubating, and brood rearing. 

Although the identification of important landscape elements (e.g., herbaceous cover) is a 

precursor for prescriptive management (e.g., grazing intensity, energy infrastructure), our results 

indicate that relatively little (1.9%) of the variation in sage-grouse space- and time-use properties 

could be explained by our suite of potentially manageable covariates (e.g., lowland NDVI, 

sagebrush, forest, vegetation biomass). The relative unimportance of vegetation variables is 

conceptually consistent with Smith et al. (2020) although they examined microhabitat as opposed 

to our somewhat coarser grain variables. Nevertheless, synthesizing our RDA results allowed us 

to rank the importance of vegetation components on sage-grouse movements within our study 

area. Sage-grouse use-intensity was highest in low cover of non-sagebrush shrubs and lowest for 

high non-sagebrush shrub cover. Our LANDFIRE-based percent sagebrush vegetation type 

variable corresponds closest with the coarse grain shrub data used in other studies (Moynahan et 

al. 2007, Doherty et al. 2008) and our results indicate the use-intensity increases with increasing 
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percent sagebrush vegetation type. Direct comparisons to our results using finer grain variables 

are difficult, but researchers in western Colorado determined that the proportion of xeric shrub 

and mesic mountain shrub (non-sage shrub categories) negatively affected sage-grouse resource 

selection during breeding season and winter (Walker et al. 2016). The xeric shrub type also had a 

negative effect during the summer-fall season. The mesic mountain shrub category in Walker et 

al. (2016) (serviceberry, antelope bitterbrush, Gambel oak) most closely corresponds to our 

vegetation height variable which registers juniper and greasewood as having higher values than 

sagebrush. The negative effects of non-sage vegetation types on habitat selection in Colorado 

correspond with our observed effects of vegetation height on use-intensity. Contrary to other 

studies, increased fine-scale sagebrush was also associated with decreased use-intensity. Use-

intensity may have been lower for higher cover of fine-scale sagebrush because site fidelity 

anchored most use to areas in south Valley County. Fine-scale sagebrush cover in Valley County 

was lower than in the adjacent Phillips County where use was limited and typically occurred 

during the lower use-intensity winter raging mode. A further contradiction to other studies was 

that increased forest cover at the hull scale was associated with increased use-intensity. We 

attribute this relationship to greater tolerance of large junipers of tree stature during breeding. In 

fact, one female repeatedly nested (often successfully) in dense juniper thickets within a juniper 

savannah. Consistent with the sage-grouse knowledge base was a complete avoidance of riparian 

cottonwood forest and ponderosa pine forest. 

Conclusions 

We examined 15+ (15 primary RDA, 15 + 2 auxiliary PCA) response variables measured 

at a 6-hour temporal scale across all seasonal stages for up to 4 years per individual and are 



112 
 
therefore unsurprised that our predictor variables (PAM factor excluded) only explained 50% of 

the variability in the response variables. Our RDA models exhibited substantial unexplained 

structure in the data which indicates that variability in space- and time-use intensity was largely 

due to unmeasured predictors (e.g., phenotypic traits, interspecific interaction, intraspecific 

competition, predator evasion, cognitive constraints, or other low-level behavior modes). 

Unexplained variation is typical of noisy ecological datasets (Zuur et al. 2007, Borcard et al. 

2018) and substantial process variance is typical in sagebrush ecosystems (Moynahan et al. 2006, 

Dahlgren et al. 2015). 

Our combination of time-local convex hull and recursive space- and time-use intensity properties 

provided a rich matrix of movement information at visited areas. The approach that we have 

presented is advantageous because derivation of the movement data was done without parametric 

models which impose difficult to meet assumptions. That is not to say that parametric models do 

not have advantages (Royle and Dorazio 2008) but most behavior models require further 

development with respect to capability, reliability,  flexibility, and ease of use (Turchin 1998, 

Barraquand and Benhamou 2008, Hooten et al. 2017). 

The fact that much of the explained variation was shared variation indicates substantial 

multicollinearity among the 4 explanatory variable sets. Had we not made use of variance 

partitioning and partial RDAs it would be very easy to give an explanatory variable or class of 

variables more causal credit than deserved. Variables not included in a statistical analysis may 

account for some or all the pure fraction of variation explained by a variable subset. The 

influences of multicollinearity on regression modeling results are a concern for all empirical 

studies but variance partitioning allows a deeper examination of variance fractions by isolating 
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pure explained variation from shared variation. Interpretation of results is paramount to good 

science and variance partitioning can aid interpretation. Other sage-grouse researchers that 

employed variance partitioning for resource selection research also observed modest percentages 

of pure variance explained by their landscape-condition predictor variable sets (Doherty et al. 

2010, Kirol et al. 2012). 

By simultaneously examining space-use, resource selection (space- and time-use 

intensity), and multiple facets of movement, our results highlight the minor scope of isolated 

articles on sage-grouse ecology and should caution managers to constantly monitor the current 

science and adapt policy as understanding improves. Indeed, generalization of sage-grouse 

habitat associations within sagebrush ecosystems may be elusive (Hagen et al. 2007, Smith et al. 

2020). Due to local (Dahlgren et al. 2015) and range-wide heterogeneity in sage-grouse related 

ecological processes (Swanson et al. 2013, Coates et al. 2018, Smith et al. 2020) the relationships 

we have illustrated will be particularly useful for understanding the sage-grouse population that 

occupies south Valley County, MT. Our detailed movement research will also be valuable for 

comparison with future wildlife studies that use high-resolution movement data for movement-

integrated research. 

Our approach of calculating a diverse set of standard movement properties and rendering 

the structures evident in the data with redundancy analysis lends a degree of objectivity to 

identifying fundamental components of sage-grouse movement and landscape-condition 

responses. That said, movement property and landscape-variable associations were of foremost 

interest; redundancy analysis was just one useful tool among many (Zuur et al. 2007, Legendre 

and Legendre 2012, Wood 2017, Borcard et al. 2018). The most important facet of a data 
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analysis is interpretability and our integrated approach, though complex, generated numerous 

useful inferences. 

We provide further evidence for some theorized interrelationships among animal 

movement properties (Van Moorter et al. 2016). The interrelationships we observed among 

movement properties and landscape conditions indicate that variability in topographic and 

vegetation characteristics may have a stronger association with resource selection patterns than 

mean values, even when averages are calculated at multiple scales. Numerous topography and 

vegetation variables were somewhat associated with female sage-grouse movement properties, 

but no single landscape-element variable or class of variables appeared to drive the observed 

movement patterns. Daylength explained the most variation of any single variable and terrain 

conditions were more strongly associated with variability in movement properties than 

vegetation conditions but movement associations with non-sage shrubs and tree cover were 

interpretable. Female sage-grouse in our study area exhibited substantial seasonal variability in 

movement properties with movement activity (speed, hull area, time-to-return, variability in 

residence time) being lowest during laying and incubation and then gradually increasing with 

time through brood-rearing, late summer, fall, and winter. Sage-grouse are a landscape species 

that have adapted to a spatiotemporally variable landscape through a combination of migration 

(high-level movements), seasonal modulation of lower-level movements, and strong site fidelity. 

Sage-grouse do exhibit non-oriented mechanisms of response to environmental conditions (e.g., 

4th order selection, predator evasion) but we have highlighted high-level constraints likely due to 

memory mechanisms, high temporal predictability of landscape conditions, and moderate spatial 

heterogeneity of landscape conditions (Mueller and Fagan 2008). 
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Figures And Tables 

Table 3. Cumulative effects of redundancy-analysis forward-selection routines performed separately for topography and vegetation 
matrices with sage-grouse movement properties as the response matrix. Forward selection was performed after correlation and 
variance inflation factor screening removed variables with ρ = 0.6 and VIF ≥ 2.5. The R2

adj Cum column indicates the cumulative 
increase in the total sum of the eigenvalues (coefficient of multiple determination) after inclusion of each additional explanatory 
variable. The p-values are for F-statistic based permutation tests at critical value α = 0.05. Global model R2

adj stopping criteria were 
also implemented in the forward selection routines. 

Predictor Label Base Predictor Computed Summary Statistic R2
adj

 

Cum p-value 

Modulator Variables 
day length length of day hull-mean of point values 0.143 0.001 
temperature daily temperature hull-mean of patch zonal means 0.158 0.001 
female age relative age of female hull-mean of point values 0.166 0.001 
precipitation daily precipitation hull-mean of patch zonal means 0.169 0.001 

Vegetation Variables 
Veg.100.rCD Vegetation Biomass  hull-rCD of 100-m patch zonal means 0.056 0.001 
Veg.RoV.100 Vegetation Biomass RoV mean of 100-m patch zonal means 0.101 0.001 
Sage.100 Sage mean of 100-m patch zonal means 0.111 0.001 
B.100 Barren mean of 100-m patch zonal means 0.123 0.001 
Sage.30.COV Sage hull-CV of 30-m patch zonal means 0.130 0.001 
F Forest hullwise zonal mean 0.135 0.001 
LOW.100 Lowland NDVI mean of 100-m patch zonal means 0.139 0.001 
Li.NDVI.100 Vegetation Biomass mean of 100-m patch zonal means 0.143 0.001 
LFIRE.Sage LANDFIRE sage hullwise zonal mean 0.146 0.001 
Height.100 Height  mean of 100-m patch zonal means 0.148 0.001 

Topography Variables 
TWI.30.COV Topographic Wetness Index hull-CV of 30-m patch zonal means 0.075 0.001 
VRM.30.COV Vector Ruggedness Measure hull-CV of 30-m patch zonal means 0.113 0.001 
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n.H.30.COV Normalized Height hull-CV of 30-m patch zonal means 0.129 0.001 
LiDEM.VRM.30 LiDAR Vector Ruggedness Measure hull-mean of 30-m patch zonal means 0.141 0.001 
WB.100 Proximity to Water Bodies hull-mean of 100-m patch zonal means 0.151 0.001 
n.H.100 Normalized Height hull-mean of 100-m patch zonal means 0.156 0.001 
WB.RoV.100 Radius of Variance to Water Bodies hull-mean of 100-m patch zonal means 0.159 0.001 
C Proximity to Channels hull zonal mean 0.162 0.001 
LiDEM.VRM.30.RoV Radius of Variance LiDAR VRM hull-mean of 30-m patch zonal means 0.163 0.001 
m.Slope Midslope Position hull zonal mean 0.165 0.001 
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Table 4. Results of redundancy-analysis variance partitioning for female sage-grouse movement 
using 4 matrices: seasonal modulators, vegetation, topography, behavior. Columns 4 and 5 are 
results attained after adding individual ID to the behavior matrix. Column 6 indicates the 
variance fractions for which a statistical test is available. All testable components were highly 
significant using permutation tests with 1001 steps and critical value α = 0.05. The total sum of 
the eigenvalues (i.e., R2

adj [coefficient of multiple determination]) was R2
adj  =  0.409 and R2

adj = 
0.499 for the behavior only and ID-added analyses, respectively. 

Component Df R2
adj 

Df 
ID added 

R2
adj 

ID added Testable 

[aeghklno] = X1 = modulators 4 0.169 4 0.169 TRUE 

[befiklmo] = X2 = vegetation 10 0.148 10 0.148 TRUE 

[cfgjlmno] = X3 = topography 10 0.165 10 0.165 TRUE 

[dhijkmno] = X4 = behavior 6 0.312 79 0.430 TRUE 

[abefghiklmno] = X1+X2 14 0.260 14 0.260 TRUE 

[acefghjklmno] = X1+X3 14 0.283 14 0.283 TRUE 

[adeghijklmno] = X1+X4 10 0.347 83 0.449 TRUE 

[bcefgijklmno] = X2+X3 20 0.231 20 0.231 TRUE 

[bdefhijklmno] = X2+X4 16 0.340 89 0.454 TRUE 

[cdfghijklmno] = X3+X4 16 0.354 89 0.466 TRUE 

[abcefghijklmno] = X1+X2+X3 24 0.323 24 0.323 TRUE 

[abdefghijklmno] = X1+X2+X4 20 0.374 93 0.471 TRUE 

[acdefghijklmno] = X1+X3+X4 20 0.387 93 0.485 TRUE 

[bcdefghijklmno] = X2+X3+X4 26 0.376 99 0.482 TRUE 

[abcdefghijklmno] = All 30 0.409 103 0.499 TRUE 

[a] = X1 | X2+X3+X4 4 0.033 4 0.017 TRUE 

[b] = X2 | X1+X3+X4 10 0.022 10 0.015 TRUE 

[c] = X3 | X1+X2+X4 10 0.035 10 0.028 TRUE 

[d] = X4 | X1+X2+X3 6 0.086 79 0.176 TRUE 

[e] 0 0.001 0 0.002 FALSE 

[f] 0 0.005 0 0.007 FALSE 

[g] 0 0.001 0 0.000 FALSE 

[h] 0 0.059 0 0.075 FALSE 

[i] 0 0.019 0 0.026 FALSE 

[j] 0 0.028 0 0.034 FALSE 

[k] 0 0.025 0 0.025 FALSE 

[l] 0 0.001 0 0.000 FALSE 

[m] 0 0.046 0 0.044 FALSE 

[n] 0 0.019 0 0.020 FALSE 

[o] 0 0.030 0 0.031 FALSE 

[p] = Residuals (1- ALL) 0 0.591 0 0.501 FALSE 
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Figure 2. Venn diagrams from a redundancy-analysis partitioning of the variation in female sage-
grouse movement properties explained by all combinations of 4 explanatory variable subsets. 
Coefficients of multiple determination (R2

adj) are provided for each pure (unique) and shared 
(common) fraction from three separate analyses: A) without a sage-grouse ID indicator variable 
in the behavior matrix, B) with the ID variable included in the behavior matrix, C) with ID and 
PAM statistical movement clusters included in the behavior matrix. 
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Figure 3. RDA scaling 2 – correlation triplot: The response variables are blue arrows, and the 
explanatory variables are black arrows. Projecting an object at a right angle on a response or a 
quantitative explanatory variable approximates the value of the object along that variable. The 
colored dots represent observations (i.e., records, objects) made for a single female sage-grouse 
hull. The angles in the triplot between response and explanatory variables, and between response 
variables themselves or explanatory variables themselves, reflect their correlations. The RDA1 
axis represents 2.6% of the total-minus-conditioned variation in the movement data and RDA2 
represents 0.6%. The distance a response variable arrow extends along an axis indicates the 
amount of variation it explains along that axis. 
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Figure 4. RDA scaling 2 – correlation triplot: The response variables are blue arrows, and the 
explanatory variables are black arrows. Projecting an object at a right angle on a response or a 
quantitative explanatory variable approximates the value of the object along that variable. The 
colored dots represent observations (i.e., records, objects) made for a single female sage-grouse 
hull. The angles in the triplot between response and explanatory variables, and between response 
variables themselves or explanatory variables themselves, reflect their correlations, The RDA1 
axis represents 1.5% of the total-minus-conditioned variation in the movement data and RDA2 
represent 0.8%. The distance a response variable arrow extends along an axis indicates the 
amount of variation it explains along that axis. 



121 
 

 

Figure 5. RDA scaling 2 – correlation triplot: The response variables are blue arrows, and the 
explanatory variables are black arrows. Projecting an object at a right angle on a response or a 
quantitative explanatory variable approximates the value of the object along that variable. The 
colored dots represent observations (i.e., records, objects) made for a single female sage-grouse 
hull. The angles in the triplot between response and explanatory variables, and between response 
variables themselves or explanatory variables themselves, reflect their correlations. The RDA1 
represents 4.3% of the total-minus-conditioned variation in the movement data and RDA2 
represents 0.5%. The distance a response variable arrow extends along an axis indicates the 
amount of variation it explains along that axis. 
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Figure 6. RDA scaling 2 – correlation biplot: The response variables are blue arrows. Projecting 
an object (black triangle) at a right angle on a response variable approximates the value of the 
object along that variable. The black triangles represent behavior-mode centroids. The RDA1 
axis represents 11.1% of the total-minus-conditioned variation in the movement data and RDA2 
represents 1.9%. The distance a response variable arrow extends along an axis indicates the 
amount of variation it explains along that axis. 
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Figure 7. RDA scaling 2 – correlation triplot: The response variables are blue arrows, and the 
explanatory variables are black arrows. Projecting an ID centroid at a right angle on a response 
variable approximates the value of the object along that variable. The colored dots represent 
observations (i.e., records, objects) made for a single female sage-grouse hull. The angles in the 
triplot between response variables reflect their correlations. The RDA1 axis represents 9.0% of 
the total-minus-conditioned variation in the movement data and RDA2 represents 2.4%. The 
distance a response variable arrow extends along an axis indicates the amount of variation it 
explains along that axis. 
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Figure 8. RDA scaling 1 – distance biplot: The colored dots represent observations (i.e., records, 
objects) made for a single female sage-grouse hull. The RDA1 axis represents 9.0% of the total-
minus-conditioned variation in the movement data and RDA2 represents 2.4%. The distance 
between objects, distance between centroids, and distance between objects and centroids 
represents how similar or different the elements are from the perspective of the variation 
represented by that plot. 



125 
 

 

Figure 9. RDA scaling 2 – correlation plot: The response variables are blue arrows and the 
angles between arrows reflect correlations between variables. The PC1 axis represents 22.4% of 
the total-minus-conditioned variation in the movement data and PC2 represents 13.6%. The 
distance a response variable arrow extends along an axis indicates the amount of variation it 
explains along the axis. The plot illustrates residual structure in female sage-grouse movement 
data after accounting for temporal modulator, vegetation, topography, observed behavior modes, 
and individual variability. 
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Figure 10. RDA scaling 2 – correlation biplot: The response variables are blue arrows, and the 
explanatory factor levels are the colored ellipses. Projecting a class-centroid label at a right angle 
on a response variable approximates the value of the class mean along that variable. The colored 
ellipses represent the standard deviation of all observations belonging to a factor level. The 
angles in the triplot between response variables reflect their correlations. The RDA1 axis 
represents 22.7% of the total-minus-conditioned variation in the movement data and RDA2 
represents 7.1%. The distance a response variable arrow extends along an axis indicates the 
amount of variation it explains along that axis. 
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Figure 11. RDA scaling 1 – distance biplot: The colored dots represent observations (i.e., 
records, objects) made for a single female sage-grouse hull. The numbered circles represent 
centroids of cluster classes identified using partitioning around medoids (PAM) analysis of 
movement properties. The RDA1 axis represents 22.7% of the total-minus-conditioned variation 
in the movement data and RDA2 represents 7.1%. The distance between objects, distance 
between centroids, and distance between objects and centroids represents how similar or 
different the elements are from the perspective of the variation in movement properties 
represented by the plot. 
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Figure 12. RDA scaling 2 – correlation plot: The response variables are blue arrows and the 
angles between the arrows reflect correlations between variables. The PC1 axis represents 12.1% 
of the total-minus-conditioned variation in the movement data and PC2 represents 11.0%. The 
distance a response variable arrow extends along an axis indicates the amount of variation it 
explains along the axis. The plot illustrates residual structure in female sage-grouse movement 
data after accounting for seasonal modulators, vegetation, topography, observed behavior modes, 
statistically-inferred behavior modes, and individual variability. 
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Figure 13. A: PCA biplot of 17 female sage-grouse movement properties and 12 supplementary 

environmental variables. The movement properties are represented by black arrows and the 
environmental variables are represented by dashed blue arrows. The angles in the biplot among 
movement metric variables and supplementary environmental variables, and among movement 

variables themselves or environmental variables themselves, reflect their correlations. The 
amount of variance in the movement properties explained by each axis is printed on the PCA 

component axes. B: PCA plot of individual hull instances colored by month. 
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CHAPTER FOUR 

BETTER BEHAVED HABITAT DELINEATIONS: A PRACTICAL 21st CENTURY 

HABITAT MAPPING APPROACH WITH SAGE-GROUSE AS CASE STUDY 

Background 

Mankind has valued information about where wildlife are and what they are doing since 

time immemorial (Bacon et al. 2023). Wildlife researchers and managers have long recognized a 

seasonality to ecological processes relevant to wildlife (Parker et al. 1984, Berry and Eng 1985, 

Geir 1986, Garrott et al. 1987) and the value of accurately delineating seasonal wildlife habitats 

(Craighead et al. 1982, White and Garrot 1990, Falconer 1993, Craighead 1998, Millspaugh and 

Marzluff 2001, Manly et al. 2002). Published research and mapping efforts often focus on spring, 

summer, fall or winter occupancy, space use, movements, or demographics (Dunn and Braun 

1986a, Homer et al. 1993, Doherty et al. 2008, Dzialak et al. 2013b, Swanson et al. 2013, Smith 

et al. 2015, Baylis et al. 2017, Dinkins et al. 2017, McMillan et al. 2021) but multi-season efforts 

are increasingly common (Birkett et al. 2012, Blomberg et al. 2013, Coates et al. 2013, 

McMillan et al. 2021). Multi-season management and conservation-related habitat delineations 

(DeCesare et al. 2012, Fedy et al. 2014, Walker et al. 2016, Coates et al. 2020) would have 

increased ecological relevance, and possibly generality (Dzialak et al. 2013a), if a behavioral 

focus was substituted for the more common seasonal focus (Ryan et al. 2012). Single-season 

research based on blanket date thresholds are unlikely to cleanly parse individual and 

environmental variability in ecological processes. 
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Seasons and behaviors are often used interchangeably in wildlife ecology, so explicit 

definitions are important. For instance, it is common for researchers to investigate biological 

differences due to breeding states (William et al. 2012, Beck et al. 2014, Dzialak et al. 2015a, 

Coates et al. 2017a, Gelling et al. 2022) or season (Peterson 1970, Dunn and Braun 1986a, 

Doherty et al. 2008, Bruce et al. 2011, DeCesare et al. 2012, Swanson et al. 2013) but then 

organize multi-season research by grouping breeding states with seasons (Fedy et al. 2012, 

Blomberg et al. 2013, Fedy et al. 2014, Walker et al. 2016). Behavior-specific inferences are an 

ecological gold standard (Cooper and Millspaugh 2001a, Beyer et al. 2010) and season-oriented 

research organized by coarse seasonal periods may not capture important behavior-by-

environment interactions (e.g., process variance). For instance, a subjectively defined wintertime 

interval is likely to miss or conflate behaviors occurring within a winter period that might be rare 

but important for survival (Moynahan et al. 2006, Newton et al. 2017). Therefore, we consider 

season-specific research to be inferior to behavior-specific research and champion individual-

based biological specificity (e.g., age, behavior, sex, species) wherever possible. In this article 

we stress an individual-specific behavioral perspective and present a framework that facilitates 

behavior-explicit habitat research using detailed animal tracking data. 

Modern methods and technologies now afford a greater focus and accounting of 

individual behaviors in the evaluation of space use and demography (Moorcroft and Barnett 

2008, Forester et al. 2009, Cagnacci et al. 2011, Lyons et al. 2013, McClintock et al. 2013, 

Fleming et al. 2015, Avgar et al. 2016, Signer et al. 2019, Muff et al. 2020). As a result, calls 

have been made for behavior-integrated research (Lima and Zollner 1996, Millspaugh and 

Marzluff 2001, Nathan et al. 2008) and recent work has demonstrated the tractability and 
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importance of behavior-specific research based on animal relocation histories (Cooper and 

Millspaugh 2001a, Marzluff et al. 2001, Morales and Ellner 2002, Sih et al. 2004a, Sih et al. 

2004b, Benhamou and Cornelis 2010, McClintock et al. 2013, Roever et al. 2014, Bennitt et al. 

2015, Abrahms et al. 2016, Gelling et al. 2022). Our ability to remotely sense behavior modes 

(Cooke et al. 2004, Gurarie et al. 2009, Van Moorter et al. 2010, Bjørneraas et al. 2012, 

Langrock et al. 2012, Madon and Hingrat 2014, Gurarie et al. 2016, Hooten et al. 2017) has 

advanced commensurate with our ability to structure behavior-specific models. In turn, we 

expect behavior-specific research to proliferate. 

Making inference on multiple behaviors is challenging because behavior-specific 

analyses require statistical models that can efficiently use detailed movement data to estimate 

spatially explicit and behavior-conditional habitat use predictions. Resource selection analysis 

(Manly et al. 2002, Johnson et al. 2006, Fieberg et al. 2021) and resource utilization analysis 

(Millspaugh et al. 2006, Freitas et al. 2008) are two of the prevailing techniques for quantifying 

and predicting habitat use. Statistical techniques for estimating habitat selection (e.g., resource 

selection functions [RSFs]) (Manly et al. 2002, Johnson et al. 2006, Lele et al. 2013) commonly 

compare habitat elements used by animals and habitat elements available or unused (Cooper and 

Millspaugh 2001a, Northrup et al. 2013). Inferences from habitat selection analyses may be 

compromised due to incorrect assumptions about movement constraints on habitat availability 

when behavior modes are aggregated (Cooper and Millspaugh 2001a, Johnson et al. 2002, Fedy 

et al. 2012, Northrup et al. 2013). For instance, African wild dogs Lycaon pictus in northern 

Bostwana were found to select roads when traveling, ignore roads when running, and avoid roads 

when resting but none of these useful inferences were apparent when all behaviors were 
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aggregated in a global model that did not account for behavior (Abrahms et al. 2016). Analysis 

of movement patterns (e.g., migration, learning excursions, foraging) can help separate animal 

behavior modes thereby reducing bias induced by mixing behaviors. However, the available or 

unused sample might still cause bias because it introduces a subjective assumption about an 

animal’s perception of the landscape (Erickson et al. 2001, Fauchald and Tveraa 2003, Freitas et 

al. 2008). A mechanistic definition of availability based on a movement model should reduce 

bias if the movement model is valid (Beyer et al. 2010) but choice of method, implementation, 

and statistical assumptions of movement models (e.g., state-space movement models) tend not to 

be trivial (Van Moorter et al. 2010, Börger 2016, Hooten et al. 2017, Cullen et al. 2022). 

Quantifying how intensively animals use areas (Beyer et al. 2010, Van Moorter et al. 

2016) is useful for examining differential space use despite an indeterminate correspondence 

between use-intensity and habitat quality (i.e., fitness contribution) (Marzluff et al. 2001, 

Millspaugh et al. 2006, Beyer et al. 2010). We define habitat use following Beyer et al. (2010) as 

the time an animal invests in a particular habitat type. We define habitat types for an animal 

following Lele et al. (2013) as unique combinations (covariate patterns) of variables in 

ecological space (e.g., age, behavior, daylength, shrub cover). Habitat-use intensity analyses are 

therefore related to other habitat selection analyses (e.g., RSFs) but directly model the degree of 

spatial or temporal use-intensity (i.e., likelihood of visitation) for habitat units (e.g., raster pixels) 

relative to landscape conditions (Millspaugh et al. 2006, Freitas et al. 2008, Hooten et al. 2013). 

In fact, habitat selection analyses may appear to consider the binary use status of landscape 

elements but popular statistical implementations are actually estimating a continuous measure of 

use-intensity (Fieberg et al. 2021). Directly relating use-intensity to biologically relevant 
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variables eliminates the subjective sampling of availability (Beyer et al. 2010) because the spatial 

extent of analysis (Johnson 1980) is restricted to observed movements. If the relationship 

between differential use-intensity and landscape conditions is modeled with sufficient temporal 

and behavioral context then causes and consequences of animal space use may become apparent. 

Ultimately, the fitted relationship between use-intensity and landscape conditions can be used to 

generate habitat maps, an often-desired product of habitat selection analyses. 

A variety of radiolocation-derived intensity metrics have been used to quantify use-

intensity. A popular metric is the intensity of a point pattern estimated with a kernel smoothing 

estimator (i.e., utilization distribution via kernel density estimator). Another common metric is 

first passage time calculated from animal movement trajectories (Fauchald and Tveraa 2003, 

Millspaugh et al. 2006, Freitas et al. 2008, Benhamou and Riotte-Lambert 2012, Hooten et al. 

2017). Estimates of habitat responses can be obtained by using suitable regression models 

(Faraway 2006, Legendre and Legendre 2012, Harrell 2015, Wood 2017) to relate use-intensity 

response variables to individual or environmental predictor variables (Pinaud and Weimerskirch 

2005, Millspaugh et al. 2006, Freitas et al. 2008, Hooten et al. 2013). Techniques and software 

developed for detailed tracking data (Calenge 2006, Calenge et al. 2009, Kie et al. 2010, Bracis 

et al. 2018, Lyons et al. 2019, Joo et al. 2020) facilitate the computation of various use-intensity 

response variables. 

 In addition to the behavioral and temporal context of habitat-use intensity it is also 

important to incorporate the spatially hierarchical nature of habitat selection (Johnson 1980). 

Therefore, models of use-intensity response to landscape conditions, and corresponding spatial 

predictions (maps), should integrate the multiscale nature of habitat use  (Doherty et al. 2010, 
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Dzialak et al. 2011, Aldridge et al. 2012, DeCesare et al. 2012, Walker et al. 2016). We have 

previously investigated using the number of use points inside short-term home ranges as a 

measure of space and time-use intensity (Chapter 2). A time-varying measure of areal density 

results if we divide the number of use points in each home range by the respective areas. Areal 

density is a useful measure of use-intensity because it is an intuitive analog to the density of a 

point pattern (Millspaugh et al. 2006) and accommodates mapping at various grain sizes that 

correspond to scales evident in the movement process of animals. In other words, multiscale 

inference and mapping is accomplished using data-driven methods that exploit detailed animal 

movement data. Furthermore, because regression models that accommodate rate or weighted-

count models (e.g., Poisson or negative binomial regression) are implemented in contemporary 

statistical computing software, no specialized regression tools are necessary to model use-

intensity response data. 

We explored modeling use-intensity for defining and mapping behavior-conditional 

habitat using multiyear movement trajectories of female greater sage-grouse (Centrocercus 

urophasianus; hereafter “sage-grouse”). Our main objective was to generate habitat maps for 

laying, incubating, brood-rearing, potential brood-rearing, unclassified behavior, winter ranging, 

and exploratory movement modes. Our secondary objective was to evaluate and describe the 

strengths and weaknesses of our approach relative to common habitat mapping considerations 

such as workflow reliability, reproducibility, replicability, efficiency, product quality, and 

product flexibility. Our modeling approach prioritized workflow simplicity; we didn’t create 

numerous separate models for each behavior that each come with subjective and difficult to 

document and report modeling decisions such as creating availability sample sets (Johnson 1980, 
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Johnson et al. 2006), choosing size of sampling footprints (Boyce 2006), and choosing analysis 

scales (2nd order, 3rd order, 4th order (Johnson 1980, Fieberg et al. 2021)). Instead, we used a 

data-driven approach to define individual behaviors and analysis scales which we integrated into 

a single model from which spatially and behaviorally explicit predictions could be made using a 

standard regression modeling framework. 

Study Area 

Our study occurred over a 425,000-ha area in southern Valley County in north-central 

Montana, USA (47.66258 N to 48.44968 N, 106.43546 W to 107.44770 W). The area was within 

Glaciated Northern Grasslands and North Central Highlands (Cleland et al. 1997, McNab et al. 

2007) and within the sage-grouse Great Plains Management Zone 1 which corresponds to the 

Silver Sagebrush Province (Connelly et al. 2004, Stiver et al. 2006). Land cover in the area 

consisted of approximately 49% big sagebrush steppe, 20% Great Plains mixed-grass prairie, 8% 

cultivated crops, 6% mat salt shrubland, 2% Great Plains riparian, and 2% Great Plains 

woodland savanna (Anderson et al. 1976, Comer et al. 2003). Additional limited land cover types 

included greasewood flats, shale badlands, and Great Plains wooded draws and ravines 

(Anderson et al. 1976, Comer et al. 2003). The area was characterized by high annual variation 

in average monthly temperature (-10.1 °C to 21.7 °C) and low mean annual precipitation (29.6 

cm), with over half occurring May – July (Arguez et al. 2010). Approximately 75% of the study 

area was in public ownership, managed predominately by the U.S. Bureau of Land Management 

(BLM), as well as the U.S. Fish and Wildlife Service (USFWS, Charles M. Russell National 

Wildlife Refuge [CMR]), and the State of Montana. The area was situated just south of the 

northernmost extent of the Wyoming big sagebrush (Artemisia tridentata wyomingensis) 
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distribution in Montana; silver sagebrush (A. cana) becomes the only woody Artemisia species 

occurring farther north. The area, located at the northeastern edge of the sage-grouse distribution, 

represents a transition zone between mixed-grass prairie and sagebrush steppe ecosystems which 

makes it a unique ecotone in comparison to many other sage-grouse habitats (Dinsmore et al. 

2002, Moynahan et al. 2007). 

Methods 

Sage-grouse Captures 

During April–May, 2018–2019, we captured 89 (48 in 2018, 41 in 2019) female sage-

grouse using spotlights and hoop nets (Giesen et al. 1982, Wakkinen et al. 1992). We made a 

concerted effort to attain a representative sample by spreading captures around 3 separate 

watersheds in our study area. Upon capture we banded females with uniquely numbered leg 

bands. We aged females as adult or yearling by examining the appearance of primary feathers 9 

and 10 (Braun and Schroeder 2015). We attached a VHF-equipped 22-g solar powered Global 

Positioning System (GPS) Platform Transmitter Terminal (PTT; model GT-22GS-GPS, 

GeoTrak, Inc., Apex, NC, USA) to each of 86 birds using a rump-mounted harness (Rappole 

1991). All PTTs were programmed to collect 4–10 locations every day and upload data every 

1.5–3.0 days to the Argos satellite system. PTT performance was specified separately for 

different seasons and the 2018 programming was slightly adjusted for 2019 based on observed 

PTT performance; PTT programming can affect GPS data transmission success. The most 

aggressive programming for a season was 15 May – 1 September where 2018-batch PTTs 

obtained up to 10 fixes every day and uploaded data to the Argos system approximately every 

two days. At a minimum, location fixes were collected at approximate 6-hr intervals regardless 
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of programming season or PTT batch. All animal handling was approved under Montana State 

University’s Institutional Animal Care and Use Committee (protocol # 2017-57). 

Sage-grouse Monitoring  

PTTs had an approximate 3-year lifespan and movement data from equipped sage-grouse 

was recorded until female mortality or loss of a PTT. During the breeding seasons of 2018, 2019 

and 2020, females were monitored by downloading GPS fixes and other PTT sensor data from 

Argos system servers every 3–5 days. During the breeding season of 2021, PTT sensor data was 

downloaded and reviewed monthly using the sub-daily location histories. We used multiple lines 

of evidence to infer female status. Localization of a PTT indicated either a nesting female, a dead 

female, or a dropped PTT. PTTs were equipped with an activity sensor that indicated if it was 

experiencing motion; static activity sensor readings indicated a mortality or dropped PTT. 

Visitation of nest sites can lead to observer-induced bias in vital rate estimates (Gibson et al. 

2015), therefore we only visited localization sites if a mortality was suspected. In most cases 

incubation recesses (movements by females off nests) were evident in the GPS fix data and 

helped separate mortalities from nests (Coates and Delehanty 2008, Dzialak et al. 2011). If a 

mortality was indicated, we verified this with a field visit and recorded the condition of carcass 

remains including evidence of predation (Blomberg et al. 2013). We estimated date of incubation 

initiation for each confirmed nest by reviewing GPS data. Nest fate was verified in the field 

when a female had moved off the nest for ≥ 3 days. Nests that failed just prior to incubation were 

verified in the field if ≥ 2 locations accrued in the same spot due to periodic visits by a female. 

After nest abandonment, we located nests and recorded evidence regarding nest fate. Hatching 

was indicated by eggs with detached membranes and eggshells that were consistent with being 
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pipped by chicks (Rearden 1951). We considered a nest successful if ≥ 1 egg had hatched. Nest 

monitoring allowed us to identify two nesting behaviors for all nests identified: laying and 

incubating. We labeled points along a female’s trajectory as laying if they preceded incubation 

initiation by ≤ 7 days. Sage-grouse lay an average of ~2 eggs/3 days and average clutch sizes are 

~8 eggs (Wallestad 1971, Schroeder et al. 1999). Our specification of 7 days is conservative and 

ensures that females with small clutches are not erroneously considered laying. 

In 2018 and 2019, we monitored females with successful nests and conducted pre-dawn 

brood counts to ascertain if a female was with a brood. Females with broods were located with 

recent PTT locations and then Yagi antennas and receivers using signals from the PTT-attached 

VHF transmitters. All VHF transmitters that were deployed in 2018 had failed by April 2019 so 

no brood checks were conducted on females outfitted with PTTs in 2018. Likewise, all VHF 

transmitters deployed in 2019 had failed by breeding season 2020 so no brood checks took place 

in 2020 or 2021. Brood checks were conducted at 2-week intervals after hatch date for up to 6 

weeks (3 checks). When no chicks were detected, we re-conducted the check within 5 days if the 

female exhibited defensive behavior consistent with brood rearing. If females immediately 

flushed out of the vicinity and no chicks could be located the brood was recorded as 

unsuccessful. Logistical constraints (e.g., weather) prevented regular brood checks at 2-week 

intervals and broods were flushed to confirm survival every 17 days on average. We labeled 

points along a female’s trajectory as brood rearing for periods when brood status was known 

active. In cases where females had successful nests, but brood status could not be checked, we 

labeled all points as potential brood rearing for ≤ 14 days after hatch. Our specification of 14 
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days was based on our observation of brood survival and our expectation that many females with 

hatched nests would have broods for at least 14 days after hatch. 

Telemetry quality assurance & quality control We minimally filtered irregular-trajectory 

raw data by removing locations defined as having step speeds (step length / step interval) ≥ 45 

km/day. We based the 45 km/day criteria on our knowledge of errors identified with PTT 

metadata (e.g., accuracy, direction of anomalous displacement) and sage-grouse ecology. Sage-

grouse have been observed moving an average of 80 km over a 11−20-day period when 

migrating large distances (Newton et al. 2017) and migration is their most rapid directional 

movement behavior. If a female were to cover 80 km in 11 days her average speed would be 7.27 

km/day which is far less than our step speed criteria. Newton et al. (2017)  noted a large 27.2 km 

movement made by a male in a single 6-hour interval which represents an extreme case and is 

only 2.42 times greater than our filtering threshold. Data transmitted to satellites from PTTs can 

have errors introduced in the transmission process resulting in corrupted locations. Therefore, we 

also removed PTT locations that were an anomalous distance away from previous and 

subsequent points along a single cardinal direction; PTT data corruption typically introduces an 

error in only the latitude or longitude coordinate. 

Use-Intensity Related Movement Properties 

Female sage-grouse that had been monitored for fewer than 30 days were excluded from 

analyses because of limited relocation histories from which to derive space- and time-use 

variables. We segmented space use by each sage-grouse into space-time local hulls (minimum 

convex polygons [MCPs]). To prevent bias in hull construction due to irregular sampling we 

subset relocations to a 6-hour sampling interval (Lyons et al. 2013). We used the R package T-
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LoCoH to process the 6-hr regular-trajectory data and quantify spatiotemporal sage-grouse 

movement properties: hull-enclosed points, area of hulls, hull timespan, and hull revisits. We 

calculated visitation rate as the number of occurrences in a hull separated by a time gap ≥ 1 

week. We calculated hull area as the area of each hull polygon; hull area provides a geometric 

delineation of space use and is analogous to a home-range area calculated for brief periods. We 

calculated hull-enclosed points as the number of points from an individual’s trajectory enclosed 

by each short-term home range. Hull-enclosed points was our response variable and is related to 

the intensity of a utilization distribution except hull-based intensity is time local and sampling-

frequency dependent. Hull-enclosed points divided by area represents the areal density of used 

points in short-term home ranges and is analogous to the density of a utilization distribution. 

Movement Mode Classification 

We used individual movement data to classify high-level and low-level movement modes 

(Chapter 1) of each female at each relocation; high-level movement modes included those 

associated with migration (range shifts), exploratory movements, nest laying, nest incubation, 

brood-rearing, and winter ranging. We inferred low-level movement modes from statistical 

clustering of movement properties (Chapter 1). Low-level modes represent distinct movement 

patterns within the high-level modes and represent patch use and interpatch transit or area-

restricted search versus central-place foraging movements. 

Winter range high-level mode We identified seasonal range shifts using a statistical 

framework that models the net-squared displacement (NSD) timeseries of a movement path as a 

function of non-linear regression model parameterizations that represent different movement 

types (Spitz et al. 2017). The migration models that we considered were migration, mixed-
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migration, dispersal, resident, and nomadic. See Appendix B for background, methods, and 

results describing our migration research using data from 2018–2020. Identical migration 

analyses were used to delineate our winter ranging modes for 2020–2021. 

Non-migratory high-level modes We used a combination of field observation, examining 

PTT data, and migration classification to label each hull in a female’s trajectory as nest laying, 

incubating, brood-rearing, potential brood-rearing, winter ranging, and unclassified. Some 

exploratory movements (low-level mode) were identified from our migration analysis, but 

shorter duration exploratory movements were identified with statistical clustering (Chapter 1). 

Additionally, uncertainty in the estimated dates of departure and arrival from NSD migration 

models caused transit movements between ranges to be initially allocated to either the winter 

range or unclassified behavior class. The unclassified behavior class was generally a catch-all 

where distinct breeding or winter-ranging statuses were not identified (i.e., pre-laying, late 

summer, fall). 

Low-level statistically inferred movement modes We identified eight statistical 

movement-behavior modes (Chapter 1) using statistical clustering (partitioning around medoids 

[PAM]) on a subset of our movement metrics (Van Moorter et al. 2010, Abrahms et al. 2017). 

We identified an exploratory mode using the clustering results and we used it to reclassify 

movement instances within the high-level modes which effectively filtered exploratory 

movements from modes such as winter ranging or unclassified (Chapter 1). Apart from the 

exploratory mode, we did not label the PAM-based modes with behavioral labels such as area 

restricted search but we note that this could be done. Our rationale for not relabeling more high-
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level behaviors was to somewhat reconcile our behavior modes with seasonal periods common in 

the sage-grouse literature. 

Use-Intensity Generalized Additive Model 

We conducted initial univariate exploratory analysis of the relationship between use-

intensity and predictor variables using pair-wise scatterplots, generalized additive models 

(GAMs), or loess smoothers. Nearly all relationships between predictor and response variables 

appeared non-linear. R packages hexbin, Hmisc, lubridate, sf, and tidyverse were used for data 

manipulation and exploratory data analyses (Grolemund and Wickham 2011, Wickham 2017, 

Pebesma 2018, Carr et al. 2021, Harrell 2022). 

We modeled the non-linear relationships between sage-grouse use-intensity and predictor 

variables with GAMs (Faraway 2006, Wood 2017). In some cases, predictor variables required 

log or square root transformations to promote convergence of model fitting algorithms (Table 5). 

Our response variable, an integer describing the number of hull-enclosed points, was 

overdispersed relative to Poisson model assumptions so we fit GAMs with a negative binomial 

distribution and a log link function. We modeled hull enclosed points using rate regression where 

hull area was used to control for the fact that larger home ranges can encompass more points. 

Controlling for hull area is analogous to other forms of sampling-effort bias corrections for 

counts such as controlling for time spent surveying or number of observers (Faraway 2006, Zuur 

2012). We included area as a smooth term instead of an offset variable to appropriately model 

use-intensity (hull enclosed points / hull square kilometers) without assuming that doubling area 

approximately doubles the number of hull-enclosed points (Zuur 2012). 
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We selected a set of 42 landscape-condition predictor variables that might influence sage-

grouse movements and therefore use-intensity on the landscape (Appendix F, Table 14). Our 

creation of landscape-condition predictor variables is described in Appendix C. We also included 

daylength, daily temperature, and female age to control for effects of seasonality and time 

(Appendix F, Table 14). Female age was calculated as the number of days since 15 June of the 

previous year for females captured as yearlings and the number of days since 15 June, two years 

prior, for females captured as adults. 

We conducted initial exploratory analysis of predictor characteristics using pairwise 

scatterplots and Pearson correlation coefficients. Pairwise scatterplots allowed for visualization 

of both linear and non-linear relationships among predictor variables. More so than generalized 

linear models, GAMs are sensitive to collinearity among predictor variables which can bias 

modeled relationships and confound model selection procedures (Wood 2017). We iteratively 

calculated pairwise Pearson correlations for every predictor variable in the dataset and 

sequentially removed variables with the maximum correlation until every variable had r ≤ 0.6. 

To further quantify non-linear associations among predictors we iteratively calculated variance 

inflation factors (VIFs) for every predictor variable in the dataset and sequentially removed the 

variable with the maximum VIF until every variable had a VIF ≤ 3.0 (Zuur et al. 2009). 

Correlation and VIF-based variable elimination were accomplished with an R script 

incorporating the auto_cor() and auto_VIF() function which allowed us to prioritize keeping 

variables that were most amenable to interpretation and generation of spatially explicit 

predictions (Benito 2021). 
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Our GAMs were structured with smooth-factor by variable interactions to accommodate 

behavior-specific habitat mapping. We used a GAM with a separate smooth term for all but three 

behavior-by-predictor combinations. We split the total sage-grouse movement database in half 

and used 38,327 records to model use-intensity; subsetting the data reduced computation time 

and facilitated model validation. Our behavior factor variable had 7 levels: laying, incubating, 

brood, potential brood, unclassified (summer), winter range, and exploring (Chapter 1). We did 

not specify an interaction with our behavior factor for the variables daylength, female age, and 

hull revisits because we expected them to have a consistent influence on use-intensity. 

Interactions were specified for: barren ground cover, distance to water bodies (km), fine-grain 

sage, fine-grain topographic ruggedness, LANDFIRE percent sage class, lowland NDVI, 

normalized height variability, normalized height, radius of variance (RoV) of fine-grain 

landscape ruggedness, RoV of vegetation biomass index, solar insolation, topographic wetness 

index, valley bottom flatness, vegetation biomass index, and vegetation height (Table 6). 

Descriptions of final predictor variables are provided in Appendix F and Table 5. 

We included a random intercept to model variability among individual grouse which 

helps account for both pseudo-replication within an individual and differential sample sizes 

among individuals (Gillies et al. 2006, Hebblewhite and Merrill 2008, Bolker et al. 2009). All 

data manipulation and analysis for our GAM model was performed in R largely using packages 

raster, exactextractr, and mgcv (Wood 2017, Baston 2021, Hijmans 2021). We plotted non-

spatial GAM results largely using R-packages mgcViz and gratia (Fasiolo et al. 2018, Simpson 

2022).  
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Model Validation 

We calibrated our model following Zuur (2012) using a calibration dataset (n = 27,758) 

withheld from our total dataset. We adjusted our model after examining model fit (deviance 

explained) and validation tools such as plots of residuals against fitted values and prediction 

error calculations (e.g., root mean squared error, mean absolute error) using the calibration 

dataset. Our calibration procedures included increasing the basis dimensions for some smooth 

terms, transforming some covariates, and using a Tweedie distribution instead of the negative 

binomial distribution (Zuur 2012, Wood 2017). We assessed overdispersion using the sum of 

Pearson residuals divided by the sample size minus the number of parameters (phi-hat) (Zuur 

2012).  

After model calibration, we validated our model following Zuur (2012) with a hold-out 

validation dataset (n = 27,677). We compared observed residuals to residuals simulated from our 

model using function check0D() of R-package mgcViz. We compared deviance residuals to 

linear predictor values using residuals_linpred_plot() of R-package gratia. We also examined 

residual patterns by plotting residuals against each covariate using check1D() of R-package 

mgcViz. However, model diagnostic and validation procedures are difficult to interpret when 

modeling binary or integer random variables so we also assessed model fit using scaled residuals 

following Hartig (2022). 

Habitat Mapping 

We integrated the spatial scale of use-intensity into our model and maps in 3 ways: 1) we 

defined use area with animal movements at the short-term home range scale (space- and time-

local kernels [hulls]), 2) we defined patch use within home ranges as 30-m radius circles 
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(Appendix F, Table 14), and 3) we made predictions by first aggregating raster-map predictors to 

a 30-m ‘radius’ (60 x 60-m pixels) and then aggregating again to the median short-term home 

range area for a given behavior. Landscape-condition maps were used to generate behavior-

specific and spatially-explicit conditional effects maps and associated standard errors. We made 

map predictions at median values of seasonality-related variables such as daylength and median 

values of female-intrinsic covariates such as age (Appendix F, Table 15). Standard errors were 

calculated using function predict.bam() of R-package mgcv. We generated a 6-behavior 

multiscale map of use-intensity by summing (raster algebra) hull-enclosed points and associated 

standard errors for each behavior-conditional map: laying, incubating, potential brood, 

unclassified (summer), winter range, and exploring. We excluded the brood behavior mode from 

the sum due to spatially extensive and large magnitude standard errors. We calculated zonal 

summary statistics and generated spatial predictions largely using R-packages raster, 

exactextractr, sf, terra, and mgcv (Hijmans 2022). We used QGIS to sum the 6 behavioral 

prediction surfaces, examine spatial predictions, and generate cartographic products (QGIS 

Development Team 2020). Finally, we generated non-spatial conditional and partial effects plots 

to aid map interpretation using R-packages gratia and ggeffects (Lüdecke 2018). 

Results 

During May – June 2018 and April 2019, we fitted 86 of 89 captured female sage-grouse 

with GPS transmitters. We collected 192,640 geographic coordinates of 86 female sage-grouse 

during 2018-04-24 – 2022-04-14 which encompassed 4 complete annual cycles of sage-grouse. 

The median and interquartile range (IQR) number of locations per female in the complete dataset 

was 1,410 (IQR = 2,933). After resampling trajectories to 6-hr intervals and removing 
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individuals with inadequate relocation histories our movement property calculations used 

110,024 relocations of 74 females. The median number of locations per female for our year-

round movement analysis was 1156 (IQR = 1940). 

Laying, incubating, brood-rearing, potential brood-rearing, winter ranging, and 

exploratory behaviors were attributed to female sage-grouse relocations whenever these 

behaviors were known from field observations or migration and cluster analysis for the winter 

ranging and exploratory mode. The median duration over which brood rearing was confirmed 

was 41.4 days (IQR = 31.5, n = 19). Sage-grouse relocations with an unconfirmed behavior state 

were allocated to a catch all ‘unknown’ behavior category, which typically occurred during 

summer. The median number of relocations per individual attributed to laying was 48 (IQR = 65, 

n = 69), median locations for incubation 99 (IQR = 112, n = 71), median locations for brood 

rearing was 143 (IQR = 80, n = 19), potential brood rearing 54 (IQR = 11, n = 30), winter range 

571 (IQR = 560, n = 42), exploring 72 (IQR = 54, n = 4), and 642 (IQR = 1022, n = 74) for the 

‘unknown’ category. After reclassification of exploratory home-range instances using cluster 

analysis (Chapter 1), the median number of relocations per individual attributed to laying was 48 

(IQR = 65, n = 69), median locations for incubation 99 (IQR = 112, n = 71), median locations for 

brood rearing was 143 (IQR = 79, n = 19), potential brood rearing 53 (IQR = 11, n = 30), winter 

range 362 (IQR = 452, n = 42), exploring 190 (IQR = 389, n = 70), and 544 (IQR = 900, n = 74) 

for the ‘unknown’ category. 

Correlation and variance inflation factor screening identified 20 minimally correlated 

continuous-scale predictors (Table 5) that we included in our negative binomial GAM. Our 

GAM explained 76% of the deviance of the data, indicating good fit. Overdispersion in our 
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GAM (phi-hat = 1.1) was minimal. Model calibration procedures did not substantially improve 

model fit or prediction errors. Model validation plots did not identify any diagnostic-data 

patterns that would indicate serious deficiencies in our model (Appendix F, Figure 52–55). 

Statistical tests of deviation from model assumptions were significant (p ≤ 0.05) but given our 

large sample size that was expected as model checking tests can be significant even when 

magnitude of departures are of no concern (Appendix F, Figure 55) (Vittinghoff et al. 2012). 

Overall root mean squared error and mean absolute error for our model was 117 and 73, 

respectively. Model errors varied by behavior type and were highest for exploratory behavior and 

lowest for potential brood (Appendix F, Table 16). Model errors were of lower magnitude than 

the central tendency of number of use points during each behavior mode which indicated 

reasonable precision of estimates (Appendix F, Table 16). 

Our GAM model included 123 smooth terms of which 111 had a p-value ≤ 0.05 (Table 

6). Only 7 terms appeared to be linearly related to log(enclosed points) as indicated by the 

expected degrees of freedom of the smooth terms being > 1 (Table 6). Use-intensity increased 

nonlinearly with increasing hull revisits and length of day but changed as a smooth periodic 

function of female age because female age indexes time and therefore seasonality (Appendix F, 

Figure 35). Partial effects plots indicated that response and predictor relationships often varied 

by behavior as allowed by the main effects (behavior) plus interaction (landscape condition × 

behavior) structure of our model (Appendix F, Figure 36-51). 

Behavioral differences in use-intensity were evident from our behavior-specific 

prediction maps (Figures 14–20). Our behavior-specific maps illustrated sage-grouse response to 

fine- and coarse-scale landscape-condition gradients and features on the landscape. For instance, 
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high uncertainty or very low predicted values were associated with features such as water bodies, 

hardpan flats, and treed areas that represent distinct landscape features that sage-grouse largely 

avoid (Figures 14–21). High uncertainty was often associated with very low values of percent 

LANDFIRE sagebrush cover class at that coarser scale and more smoothed spatial gradient. 

Spatially-explicit uncertainty estimates varied as a function of geographically differential use 

among behaviors and different sample sizes among behaviors (Figures 14–21, [Appendix F, 

Table 16]). Uncertainty estimates appeared to be useful for delineating avoided areas (Figures 

14–21) because these areas generally had combinations of covariates (e.g., habitat conditions) 

that were rare or unobserved in the data. Our brood map had high uncertainty due to our limited 

sample size for that behavior (Appendix F, Table 16) so we excluded it from our aggregate 6-

behavior map (Figure 21). 

Our scale-integrated 6-behavior map (Figure 21) delineated areas that were avoided 

during some or all behaviors and indicates both habitat versus non-habitat areas based on 

standard errors as well as a multiscale map of geographic use-intensity (predicted use points / 

pixel area) by female sage-grouse. Our 6-behavior map was effective at integrating multiple 

behaviors and scales as indicated by the blending of use-intensity values for space use extents 

unique to each behavior (Figures 14–21). 

Non-spatial conditional effects plots can help with map interpretation because predictions 

are plotted on the response scale so correspond to mapped values. For example, given a fixed 

home range area, use points were highest for low or intermediate values of proportion bare 

ground, and vegetation biomass, but declined significantly at high values of vegetation biomass 

that may represent forays into dense juniper savannah or greasewood flats (Figure 22). 
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Additional conditional effects plots relevant for evaluating habitat responses can easily be 

recovered from our fitted model, although that was not our focus here. 

Discussion 

We demonstrated a flexible framework for modeling habitat distributions with generalized 

additive models using timeseries of space- and time-use intensity data (areal density) calculated 

from lifetime trajectories of sage-grouse. We integrated 7 empirically determined behavior 

modes encompassing all phenological stages of sage-grouse into a single modeling framework to 

estimate behavior-specific habitat selection in relation to 15 habitat conditions while controlling 

for use area, use-area timespan, and use area revisits. Our behavior-conditional model 

predictions of use-intensity were made at biologically meaningful grain sizes (median use area) 

for each behavior mode which alleviated scale dependance in identifying habitat distributions. 

We validated our model using accepted standards and incorporated uncertainty estimates into 

spatial predictions which is necessary for preventing inappropriate inference on habitat 

distribution, though often neglected by habitat mapping practitioners (Aldridge and Boyce 2007, 

Doherty et al. 2010, Fedy et al. 2014, Rice et al. 2016, Walker et al. 2016, Coates et al. 2020). 

Our use-intensity timeseries approach of modeling habitat is consistent with the concept of a 

temporally-explicit utilization distribution as well as a inhomogeneous point processes which 

reconciles it with progressive habitat selection methodologies (Kie et al. 2010, Bivand et al. 

2013, Hooten et al. 2013, Northrup et al. 2016, Fieberg et al. 2021). Temporally explicit habitat 

selection analyses are powerful tools in wildlife ecology because they facilitate behavioral 

specificity of inferences and address temporal-scale dependance of inferences (Schick et al. 

2008, Northrup et al. 2016). 
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Behavior Integration 

Behavior analysis workflow Our simultaneous modeling of 7 behavior modes using a 

behavior-by-predictor interaction indicated that substantial behavioral differences in resource 

selection occurred for our focal population. Our methodology allowed efficient evaluation of the 

statistical significance of behavior-conditional effects along with the functional form of the 

relationship between use-intensity and predictors. We could readily interpret use-intensity 

response to specific landscape conditions using GAM partial effects plots and conditional effects 

were easily plotted for specific landscape condition combinations of interest. We produced 

spatially explicit conditional effects representing prediction maps of use-intensity using GIS 

predictor maps (landscape conditions) and relevant values for un-mappable covariates (e.g., 

median age, behavior-specific median daylength). Our use of a single GAM model to make 

multi-behavior inference greatly alleviated disparate workflows where separate models are fitted 

to different datasets for different behaviors or seasons. 

We were able to generate behavior-specific maps and associated uncertainty estimates in 

R which lends flexibility, transparency, and repeatability to map production. Historically 

researchers tend to generate maps in a GIS that is separate from the statistical computing 

software used to fit habitat distribution models and may not give descriptions of GIS methods 

adequate for reproducing or replicating methods (Guisan and Zimmermann 2000, Manly et al. 

2002, Doherty et al. 2010, DeCesare et al. 2012, DeCesare et al. 2014, Fedy et al. 2014, Walker 

et al. 2016). Use of a separate GIS makes the workflow more difficult to document and report, 

reduces mapping efficiency, and introduces opportunity for error when specifying model 

expressions. Iterative model testing (Guisan and Zimmermann 2000) and computation of 

prediction uncertainty (Faraway 2006, Vittinghoff et al. 2012, Harrell 2015, Wood 2017) are 
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important modeling procedures so the ability to generate maps using statistical computing 

software scripts promotes workflow consistency and saves time over executing workflows 

through the graphical user interface of a standalone GIS (Guisan and Zimmermann 2000). Our 

GIS-integrated (R has GIS capabilities) statistical modeling framework was of compound benefit 

as we produced multiple behavior-specific maps. 

Rare behaviors Each of our behavior-specific maps had unique characteristics which 

illuminated methodological considerations in addition to biological phenomena. Brood rearing 

was under sampled due to technological issues (not true rarity) so its map had generally high 

standard errors illustrating that uncertainty is a function of frequency of behavior in the dataset. 

Rare behaviors may also have small sample sizes that will result in less precise prediction 

surfaces, but rare behaviors are not necessarily the least biologically important. For instance, 

sage-grouse breed on communal mating grounds and might visit habitat conditions such as food 

sources, or open ridges with good vantage points when transiting to and from mating locations. 

A use-intensity map for lek visitation behavior would have ubiquitously large standard errors and 

limited management applications if a researcher was only able to identify a few instances of 

mating-taxis behavior per individual. Researchers can consider removing rare-behavior maps 

when combining maps into an overall map as we did for our confirmed brood-rearing map. 

However, variable importance or responses to landscape conditions might still be evaluated for a 

rare behavior despite limited utility of spatially explicit predictions. Furthermore, inferences 

from other behaviors may be more accurate if rare behaviors are accounted for (filtered from 

other behaviors) when fitting a model, although we did not assess those effects here. Rare 

behaviors may be of disproportionate biological importance (e.g., lek visitation, predator 
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evasion, transit flights) and should not be disregarded just because they are inconvenient to 

research or integrate into habitat distribution maps. The methodology we have outlined promotes 

use of as many behaviors as can be identified. 

Time dependance and behavior The identification of rare behaviors is contingent upon 

the temporal scale (frequency of relocations) of time-use sampling (e.g., use-intensity, 

revisitation) because movement analyses is time-scale dependent (Bracis et al. 2018, Lyons et al. 

2019). Indeed, recent research has highlighted that spatial and temporal scales both influence 

resource selection inferences (Johnson et al. 2002, Northrup et al. 2016, Serrouya et al. 2017). 

Increasing positional sampling rate decreases the likelihood that important behaviors are missed 

and increases researcher ability to identify behaviors using movement analysis (Rowcliffe et al. 

2012). Temporal scale dependance can impact inferences in both VHF-based studies or GPS-

based studies (White and Garrot 1990, Mills et al. 2006, Kochanny et al. 2009, Northrup et al. 

2016, Serrouya et al. 2017) and represents both a methodological challenge and opportunity to 

better understand wildlife species (Cagnacci et al. 2010, Kie et al. 2010, Northrup et al. 2016). 

Our approach can accommodate medium to high positional sampling rates which are necessary 

for calculating detailed time-series of short-term home ranges and characteristics. 

 Sampling-frequency inferential dependence can be reduced by controlling for behavior 

modes. For instance, some sage-grouse in our study used areas with relatively high Rocky 

Mountain juniper cover during nesting and our incubation-conditional estimates indicated that 

fact. Predicted areal density during incubation was moderate to high in most juniper areas with 

low to moderate standard errors for upland juniper savannahs. Strong avoidance of juniper cover 

would likely have been indicated by a behavior-pooled analysis; avoidance of juniper during 
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non-nesting behaviors would likely dominate the relationship. The methodology we have 

outlined promotes behavioral, spatial, and temporal process integration so that use-intensity 

estimates are amenable to nuanced interpretation. 

Spatial Scale 

We modeled the use of short-term home ranges based on observed movements which had 

multiple benefits regarding spatial-scale dependence of inferences. Our approach alleviated the 

need to subjectively define an analysis extent (availability sample), which is problematic but 

must often be done in resource selection analyses (Johnson 1980, Johnson et al. 2002, Manly et 

al. 2002, Boyce 2006, Johnson et al. 2006). Users of our approach can select tuning parameters 

for home-range estimation using published guidelines which reconciles the home range 

parameters with research objectives and species- or individual-specific movement tendencies 

(Martin et al. 2008, Lyons et al. 2019). For example, we aggregated our moderate and high-

resolution landscape condition variables (e.g., sub-meter NAIP imagery, LiDAR data, 1/3 arc 

second DEM terrain variables) using 30-m radius use patches within home ranges so that the 

spatial and temporal scale of our inferences are an integration of fine-scale use within coarser 

scale home ranges. 

We chose a single 30-m radius extent to represent patch-level use because it reconciles 

with extents commonly used for microhabitat sampling (Herrick et al. 2017), was a coarser 

extent than the accuracy of our GPS transmitters, and simplified model structure. Our patch-level 

(30-m radius) sampling at within home range use points (nearest neighbor sets) could be made 

finer if more resolute and accurate landscape condition maps and GPS locations were available. 

Alternatively, multiple grain sizes could be evaluated to search for grains with the best fit to the 
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data (Doherty et al. 2010, Laforge et al. 2015). However, we caution against data mining sets of 

covariates smoothed to different grain sizes and assuming results are confirmatory of important 

scales. Choice of landscape-condition grain sizes used for evaluating habitat responses should be 

based on prior evidence unless research is acknowledged as exploratory. Our approach is data 

driven and inherently multiscale in the sense that scale of analysis is largely a function of animal 

movements so subjective decisions about scale are reduced. The methodology we have outlined 

will accommodate use of increasingly detailed landscape condition variables such as very high-

resolution or time varying landscape conditions. 

We made predictions at median values of home-range timespan and home-range area for 

each behavior mode, but other biologically relevant values could have been used. We aggregated 

base covariates to 60-m pixels and then to median home-range area sized pixels to correspond 

with predictor sampling using nearest neighbor sets in each home range. Spatial reconciliation of 

sampling and prediction datasets should always be prioritized because aggregation schemes and 

data footprints can alter results (i.e., alter statistical support, modifiable areal unit problem, Plant 

(2012)).  

Map Interpretation 

Prediction maps of use-intensity and prediction uncertainty are both important for 

delineating space use. Habitat selection theory assumes that animals prefer some landscape 

condition combinations and avoid others (Manly et al. 2002). Habitat selection analyses based on 

telemetry data typically conflate use with visitation (Lele et al. 2013). In fact, it is likely that an 

animal may be briefly located in a position on the landscape that it does not prefer due to a 
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mistake (got lost, poor situational awareness) or irregular operations (predator evasion) where 

the animal is moving with no regard for landscape conditions. 

Our behavior-specific approach helps address the fact that use points and individual 

instances of time varying use-intensity do not all have the same biological relevance. Use-

intensity in commonly visited matrix habitat and preferred habitat will be estimated with 

relatively low uncertainty and use-intensity of rarely or never visited habitat types (non-habitat) 

will be estimated with relatively high uncertainty. Therefore, spatial predictions of uncertainty 

within a study area may largely represent an index of habitat avoidance with low values 

indicating low avoidance. Uncertainty maps are also helpful in identifying behavioral use-

intensity prediction maps where widespread uncertainty degrades the utility of the map due to a 

limited sample size. In our study, VHF transmitter longevity resulted in a limited sample size and 

therefore high standard errors for our confirmed-brood map, so we removed it from our 

combined-behavior map. 

A further consideration is that low and moderate use-intensity will be common and 

extreme use-intensity will be rare, therefore, uncertainty will also increase at extreme degrees of 

use-intensity. The differential uncertainty we describe is due to movement among patches (low 

use-intensity) being common and patch use-intensity varying as a function of the use duration 

and revisitation rate (Lyons et al. 2013). Patches are often used and then abandoned so low or 

moderate use-intensity is common and can vary upward to moderate-to-high use-intensity if 

some revisitation elevates the lifetime use-intensity. 

Landscape species like sage-grouse, American bison (Bison bison), moose (Alces alces), 

or pronghorn (Antilocapra americana) will likely exhibit substantial variation in area use over 
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their lifetime (Larter and Gates 1994, Jacques et al. 2009, van Beest et al. 2011, Van Moorter et 

al. 2013, McMillan et al. 2021) and individuals may rarely have high fidelity to an area used for 

substantial durations (Van Moorter et al. 2009, Mueller et al. 2011, Lyons et al. 2013, Bracis et 

al. 2015, Bracis et al. 2018, Geremia et al. 2019) which results in an elevated degree of use-

intensity. From a statistical perspective extreme use-intensity is represented as outliers in the 

extreme right tail of the right-skewed empirical distribution of number of enclosed points in 

short-term home ranges. We observed the phenomenon of extreme use-intensity values in female 

sage-grouse due to differential area fidelity among individuals and different lifespans where the 

longest-lived individuals were obviously rarest. Consequently, very high use-intensity 

predictions where uncertainty is high required careful interpretation. Interpreting rare events and 

adequately modeling outliers is challenging. In our study, for example, the highest use-intensity 

values were observed at nesting areas where short-term home ranges overlapped areas used for 

prior nesting attempts. Rare behavioral patterns may have substantial ecological importance, but 

we stress that the highest use-intensity does not necessarily correspond to the most important 

habitat (Beyer et al. 2010). However, high use-intensity predictions where uncertainty is low or 

moderate may indicate areas for which individuals have high fidelity which may indeed confer 

fitness advantages (Chapter 5, Piper (2011)). Habitat conditions with moderate use-intensity are 

areas which have been used to a degree typical of a behavior mode and areas with lower use-

intensity and low uncertainty have habitat conditions that have been used mildly but are not 

necessarily unimportant. Extremely low use-intensity does indicate avoidance, but care should be 

taken in selecting transformation thresholds if ranked use-intensity categories (spatial habitat use 

bins) are desired for habitat mapping; continuous-field discretization can interfere with valid 
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interpretation (Gao 2009). The threshold defining the first and second ranked bin should be 

chosen to indicate non-habitat and low-use habitat, respectively, though we opted not to create 

ranked bins because of difficulties defining objective and biologically relevant thresholds. Valid 

links between use-intensity and fitness are challenging to make and need to be established on a 

population-by-population basis; even then the relationship may not be stable through time 

(Hebblewhite and Merrill 2008, Beyer et al. 2010, van Beest et al. 2011, DeCesare et al. 2014, 

Geremia et al. 2019). 

We stress that use-intensity is not necessarily proportional to habitat quality and that low 

to moderate use-intensity predictions will often be the most reliable. Model validation (Boyce et 

al. 2002) is important but validation statistics do not indicate spatially variable model 

performance. Estimates of uncertainty are particularly important when maps are used as 

covariates in subsequent research (Aldridge and Boyce 2007, Gibson et al. 2016) because 

predictor data where estimates are unreliable should not be included in analyses. Low to 

moderate uncertainty estimates will provide an indication of where prediction interpretation is 

warranted and indicate areas where use of a landscape-condition pattern (covariate pattern) is a 

rare event (may indicate avoidance). We champion combined interpretation of spatially and 

behaviorally explicit use-intensity predictions and corresponding uncertainty estimates for 

understanding animal space use. 

Conclusions 

Our approach of examining use-intensity as a time-varying quantity over the lifetime of 

an animal encourages nuanced and biologically realistic interpretation of the causes and 

consequence of space- and time-use by animals. Attempting to discern habitat responses from 
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static behavior-naïve snapshots of use munges important ecological processes such as time 

varying and behavior-conditional habitat selection that is fundamental to wildlife ecology. Our 

behavior-specific modeling approach solves some of the problems with classic habitat mapping 

approaches and can generate either very specific or somewhat general habitat evaluation 

products. Spatial and temporal scale dependence is attenuated by use of a behavior-integrated 

model of a timeseries of use-intensity data. One caveat is that generality of inferences may be 

limited by sampling design where sampling from the entire range of a species and accounting for 

geographic variation may not be feasible. Inferences derived from local sampling may be most 

useful for understanding local populations. However, our approach can be extended with 

geographic error term correlation structures or predictor term interactions that account for and 

facilitate interpretation of regional variation. 
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Figures & Tables 

Table 5. List of all predictor variables in our fitted generalized additive model of female sage-
grouse use-intensity. Coefficient of variation and radius or variance of a predictor are labeled CV 
and RoV, respectively. 

Variable Transform VIF 
Barren 1.00 2.10 
Female Age 1.00 1.25 
Fine-grained Sage sqrt 1.62 
Hull Area 1.00 1.23 
Hull Revisits 1 1.20 
Hull Timespan 1 1.08 
LANDFIRE sage 1.00 1.81 
Length of Day 1.00 1.76 
LiDAR Vector Ruggedness Measure 1.00 1.88 
Lowland NDVI 1.00 2.06 
MultiResolution Valley Bottom Flatness 1.00 2.54 
Normalized Height CV 1.00 2.42 
Normalized Height 1.00 2.00 
Proximity to Water Bodies sqrt 1.48 
Solar Insolation 1 1.14 
Topographic Wetness Index CV 1.00 1.47 
Vegetation Biomass  1.00 2.08 
Vegetation Biomass RoV 1.00 1.90 
Vegetation Height (LiDAR based) (x^0.6)*-1 2.41 
Water Body Presence RoV 3.00 1.33 

Table 6. List of all parametric and smooth terms in our fitted generalized additive model of 
female sage-grouse use-intensity. The expected degrees of freedom (edf) of smooth terms 
indicates a nonlinear relationship between use-intensity and a predictor if edf > 1. Ref.df is the 
degrees of freedom used for hypothesis testing of term significance.   

A. parametric coefficients Estimate Std. 
Error t-value p-value 

(Intercept) 5.30 0.27 19.31 < 0.0001 

behavior = laying -1.25 1.22 -1.03 0.3027 

behavior = brood -0.18 0.43 -0.43 0.6708 

behavior = potential brood 0.34 0.29 1.16 0.2446 
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behavior = unclassified 0.15 0.27 0.55 0.5849 

behavior = winter range -0.52 0.28 -1.84 0.0658 

behavior = exploring -1.21 0.27 -4.40 < 0.0001 

B. smooth terms edf Ref.df F-
value p-value 

s(individual ID) 71.94 73.00 103.10 < 0.0001 

s(hull revisits) 8.56 8.89 
3854.1

7 < 0.0001 

s(area):behavior = incubating 4.54 4.81 57.57 < 0.0001 

s(area):behavior = laying 3.89 4.04 39.05 < 0.0001 

s(area):behavior = brood 2.63 2.93 5.65 0.0005 

s(area):behavior = potential brood 1.00 1.00 42.86 < 0.0001 

s(area):behavior = unclassified 5.14 5.72 431.24 < 0.0001 

s(area):behavior = winter range 5.13 5.63 317.64 < 0.0001 

s(area):behavior = exploring 8.74 8.95 61.07 < 0.0001 

s(hull timespan):behavior = incubating 4.43 5.30 6.38 < 0.0001 

s(hull timespan):behavior = laying 5.64 6.25 16.64 < 0.0001 

s(hull timespan):behavior = brood 6.59 7.42 2.78 0.0045 

s(hull timespan):behavior = potential brood 2.02 2.51 9.43 < 0.0001 

s(hull timespan):behavior = unclassified 8.56 8.93 97.68 < 0.0001 

s(hull timespan):behavior = winter range 6.02 6.61 35.97 < 0.0001 

s(hull timespan):behavior = exploring 8.25 8.76 78.98 < 0.0001 

s(LANDFIRE sage):behavior = incubating 5.48 6.52 3.63 0.0009 

s(LANDFIRE sage):behavior = laying 2.75 3.47 10.24 < 0.0001 

s(LANDFIRE sage):behavior = brood 5.33 6.44 5.67 < 0.0001 

s(LANDFIRE sage):behavior = potential brood 5.88 6.62 5.36 0.0001 

s(LANDFIRE sage):behavior = unclassified 8.76 8.98 34.76 < 0.0001 

s(LANDFIRE sage):behavior = winter range 8.47 8.92 12.51 < 0.0001 

s(LANDFIRE sage):behavior = exploring 7.75 8.58 25.07 < 0.0001 

s(lowland NDVI):behavior = incubating 2.48 3.14 3.54 0.0134 

s(lowland NDVI):behavior = laying 5.38 6.32 5.32 < 0.0001 

s(lowland NDVI):behavior = brood 1.96 2.42 3.08 0.0566 
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s(lowland NDVI):behavior = potential brood 5.17 6.07 4.70 0.0001 

s(lowland NDVI):behavior = unclassified 8.79 8.98 61.65 < 0.0001 

s(lowland NDVI):behavior = winter range 7.17 7.62 28.38 < 0.0001 

s(lowland NDVI):behavior = exploring 4.72 5.62 7.08 < 0.0001 
s(fine-grain landscape ruggedness rCD):behavior = 
incubating 7.45 8.24 10.16 < 0.0001 
s(fine-grain landscape ruggedness rCD):behavior = 
laying 1.00 1.00 19.76 < 0.0001 
s(fine-grain landscape ruggedness rCD):behavior = 
brood 3.37 4.25 2.13 0.0764 
s(fine-grain landscape ruggedness rCD):behavior = 
potential brood 3.68 4.58 3.58 0.0037 
s(fine-grain landscape ruggedness rCD):behavior = 
unclassified 8.83 8.99 48.18 < 0.0001 
s(fine-grain landscape ruggedness rCD):behavior = 
winter range 7.28 8.28 7.94 < 0.0001 
s(fine-grain landscape ruggedness rCD):behavior = 
exploring 8.15 8.79 12.84 < 0.0001 
s(LiDAR NDVI (biomass index)):behavior = 
incubating 6.47 6.92 6.07 < 0.0001 

s(LiDAR NDVI (biomass index)):behavior = laying 4.58 5.17 3.63 0.0015 

s(LiDAR NDVI (biomass index)):behavior = brood 2.13 2.61 11.14 < 0.0001 
s(LiDAR NDVI (biomass index)):behavior = 
potential brood 1.00 1.00 1.79 0.1804 
s(LiDAR NDVI (biomass index)):behavior = 
unclassified 7.70 8.60 19.38 < 0.0001 
s(LiDAR NDVI (biomass index)):behavior = winter 
range 5.03 5.41 14.11 < 0.0001 
s(LiDAR NDVI (biomass index)):behavior = 
exploring 4.76 5.35 8.84 < 0.0001 
s(LiDAR NDVI RoV (biomass index 
RoV)):behavior = incubating 4.86 5.05 19.28 < 0.0001 
s(LiDAR NDVI RoV (biomass index 
RoV)):behavior = laying 5.29 5.73 4.24 0.0002 
s(LiDAR NDVI RoV (biomass index 
RoV)):behavior = brood 1.00 1.00 0.45 0.5049 
s(LiDAR NDVI RoV (biomass index 
RoV)):behavior = potential brood 1.98 2.42 1.62 0.2953 
s(LiDAR NDVI RoV (biomass index 
RoV)):behavior = unclassified 7.73 8.51 35.69 < 0.0001 
s(LiDAR NDVI RoV (biomass index 
RoV)):behavior = winter range 7.35 8.29 11.35 < 0.0001 
s(LiDAR NDVI RoV (biomass index 
RoV)):behavior = exploring 5.43 6.50 17.37 < 0.0001 
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s(vegetation height):behavior = incubating 5.84 6.90 11.06 < 0.0001 

s(vegetation height):behavior = laying 1.00 1.00 0.40 0.528 

s(vegetation height):behavior = brood 6.31 7.08 6.51 < 0.0001 

s(vegetation height):behavior = potential brood 5.19 6.21 4.98 0.0001 

s(vegetation height):behavior = unclassified 8.94 9.00 62.39 < 0.0001 

s(vegetation height):behavior = winter range 6.02 7.00 5.26 < 0.0001 

s(vegetation height):behavior = exploring 3.18 4.16 1.72 0.1456 

s(length of day) 8.71 8.97 80.91 < 0.0001 

s(female age) 8.82 8.98 44.21 < 0.0001 
s(distance to water bodies (km)):behavior = 
incubating 6.51 7.47 5.11 < 0.0001 

s(distance to water bodies (km)):behavior = laying 2.83 3.59 3.04 0.021 

s(distance to water bodies (km)):behavior = brood 4.93 5.75 11.23 < 0.0001 
s(distance to water bodies (km)):behavior = 
potential brood 7.49 8.23 15.56 < 0.0001 
s(distance to water bodies (km)):behavior = 
unclassified 8.74 8.98 96.66 < 0.0001 
s(distance to water bodies (km)):behavior = winter 
range 7.93 8.68 15.15 < 0.0001 
s(distance to water bodies (km)):behavior = 
exploring 4.94 6.05 2.58 0.0164 

s(water body presence RoV):behavior = incubating 7.72 8.52 16.92 < 0.0001 

s(water body presence RoV):behavior = laying 5.14 6.12 3.42 0.0021 

s(water body presence RoV):behavior = brood 4.04 4.91 5.65 0.0001 
s(water body presence RoV):behavior = potential 
brood 1.00 1.00 0.01 0.9295 

s(water body presence RoV):behavior = unclassified 8.16 8.80 32.61 < 0.0001 
s(water body presence RoV):behavior = winter 
range 7.47 8.36 6.07 < 0.0001 

s(water body presence RoV):behavior = exploring 8.14 8.74 9.78 < 0.0001 
s(fine-grain sage (proportion sagebrush)):behavior = 
incubating 3.21 3.92 15.07 < 0.0001 
s(fine-grain sage (proportion sagebrush)):behavior = 
laying 1.00 1.00 69.75 < 0.0001 
s(fine-grain sage (proportion sagebrush)):behavior = 
brood 4.95 5.57 7.20 < 0.0001 
s(fine-grain sage (proportion sagebrush)):behavior = 
potential brood 2.92 3.55 9.48 < 0.0001 
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s(fine-grain sage (proportion sagebrush)):behavior = 
unclassified 8.77 8.98 99.23 < 0.0001 
s(fine-grain sage (proportion sagebrush)):behavior = 
winter range 7.86 8.66 22.05 < 0.0001 
s(fine-grain sage (proportion sagebrush)):behavior = 
exploring 8.02 8.74 18.77 < 0.0001 
s(barren index (proportion barren)):behavior = 
incubating 7.79 8.10 16.48 < 0.0001 
s(barren index (proportion barren)):behavior = 
laying 5.75 6.73 6.42 < 0.0001 
s(barren index (proportion barren)):behavior = 
brood 3.44 4.25 1.22 0.362 
s(barren index (proportion barren)):behavior = 
potential brood 6.14 7.02 6.75 < 0.0001 
s(barren index (proportion barren)):behavior = 
unclassified 7.56 8.34 14.11 < 0.0001 
s(barren index (proportion barren)):behavior = 
winter range 6.72 7.84 7.86 < 0.0001 
s(barren index (proportion barren)):behavior = 
exploring 6.72 7.78 5.66 < 0.0001 

s(solar insolation):behavior = incubating 6.78 7.71 15.27 < 0.0001 

s(solar insolation):behavior = laying 6.83 7.87 7.29 < 0.0001 

s(solar insolation):behavior = brood 5.53 6.28 4.04 0.0014 

s(solar insolation):behavior = potential brood 1.00 1.00 32.03 < 0.0001 

s(solar insolation):behavior = unclassified 8.32 8.82 23.21 < 0.0001 

s(solar insolation):behavior = winter range 6.59 7.40 10.50 < 0.0001 

s(solar insolation):behavior = exploring 6.53 7.38 21.62 < 0.0001 
s(multiresolution valley bottom flatness):behavior = 
incubating 7.32 7.90 14.31 < 0.0001 
s(multiresolution valley bottom flatness):behavior = 
laying 7.41 7.91 10.41 < 0.0001 
s(multiresolution valley bottom flatness):behavior = 
brood 3.88 4.83 2.02 0.0781 
s(multiresolution valley bottom flatness):behavior = 
potential brood 1.00 1.00 7.18 0.0074 
s(multiresolution valley bottom flatness):behavior = 
unclassified 7.18 7.92 14.28 < 0.0001 
s(multiresolution valley bottom flatness):behavior = 
winter range 7.78 8.51 56.68 < 0.0001 
s(multiresolution valley bottom flatness):behavior = 
exploring 7.57 8.46 18.74 < 0.0001 
s(topographic wetness index (CV)):behavior = 
incubating 8.36 8.87 20.62 < 0.0001 
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s(topographic wetness index (CV)):behavior = 
laying 1.00 1.00 19.37 < 0.0001 
s(topographic wetness index (CV)):behavior = 
brood 5.42 6.31 2.77 0.013 
s(topographic wetness index (CV)):behavior = 
potential brood 3.75 4.61 3.82 0.0026 
s(topographic wetness index (CV)):behavior = 
unclassified 8.71 8.97 22.64 < 0.0001 
s(topographic wetness index (CV)):behavior = 
winter range 6.81 7.74 4.90 < 0.0001 
s(topographic wetness index (CV)):behavior = 
exploring 5.52 6.63 11.35 < 0.0001 

s(normalized height):behavior = incubating 7.12 8.12 23.77 < 0.0001 

s(normalized height):behavior = laying 6.44 7.43 9.15 < 0.0001 

s(normalized height):behavior = brood 4.63 5.52 3.80 0.0015 

s(normalized height):behavior = potential brood 1.00 1.00 1.12 0.2905 

s(normalized height):behavior = unclassified 8.22 8.83 14.84 < 0.0001 

s(normalized height):behavior = winter range 7.39 8.35 19.39 < 0.0001 

s(normalized height):behavior = exploring 6.72 7.80 6.37 < 0.0001 

s(normalized height CV):behavior = incubating 7.44 8.33 9.67 < 0.0001 

s(normalized height CV):behavior = laying 1.00 1.00 47.09 < 0.0001 

s(normalized height CV):behavior = brood 5.53 6.45 2.81 0.0067 

s(normalized height CV):behavior = potential brood 3.73 4.59 2.47 0.0503 

s(normalized height CV):behavior = unclassified 8.01 8.74 67.49 < 0.0001 

s(normalized height CV):behavior = winter range 7.59 8.46 11.27 < 0.0001 

s(normalized height CV):behavior = exploring 5.14 6.30 12.05 < 0.0001 
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Figure 14. Use-intensity predictions based on number of relocations inside short-term home ranges of laying sage-grouse individuals 
in our study area near Glasgow, MT, USA. Sage-grouse location data were from 2018–2021. 
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Figure 15. Use-intensity predictions based on number of relocations inside short-term home ranges of incubating sage-grouse 
individuals in our study area near Glasgow, MT, USA. Sage-grouse location data were from 2018–2021. 
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Figure 16. Use-intensity predictions based on number of relocations inside short-term home ranges of brood rearing sage-grouse 
individuals in our study area near Glasgow, MT, USA. Sage-grouse location data were from 2018–2021. 
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Figure 17. Use-intensity predictions based on number of relocations inside short-term home ranges of potentially brood rearing sage-
grouse individuals in our study area near Glasgow, MT, USA. Sage-grouse location data were from 2018–2021. 
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Figure 18. Use-intensity predictions based on number of relocations inside short-term home ranges of female sage-grouse individuals 
in our study area near Glasgow, MT, USA. Sage-grouse location data were from 2018–2021. 
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Figure 19. Use-intensity predictions based on number of relocations inside short-term home ranges of female sage-grouse individuals 
during winter in our study area near Glasgow, MT, USA. Sage-grouse location data were from 2018–2021. 
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Figure 20. Use-intensity predictions based on number of relocations inside short-term home ranges of exploring or transiting female 
sage-grouse individuals in our study area near Glasgow, MT, USA. Sage-grouse location data were from 2018–2021. 
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Figure 21. Integrated 6-behavior use-intensity predictions based on number of relocations inside short-term home ranges of female 
sage-grouse individuals in our study area near Glasgow, MT, USA. Behavior mode integration was achieved by summing use-
intensity predictions and associated standard errors for 6 behavior modes. Sage-grouse location data were from 2018–2021. 
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Figure 22. Conditional effects plot from a negative binomial generalized additive model indicating how counts of home-range 
enclosed points for incubating female sage-grouse vary as a function of vegetation biomass for quartiles of proportion bare ground at 
four different daylengths. Other covariates were held at median values. Shaded areas represent 95% confidence bands.
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CHAPTER FIVE 

NESTING AREA FIDELITY AND MOVEMENT STRATEGIES SUPERSEDE LANDSCAPE 

CONDITIONS IN DETERMINING NEST SUCCESS IN SAGE-GROUSE 

Background 

Familiarity with the surrounding landscape is thought to be beneficial to animals through 

mechanisms such as increased spatial awareness of foraging resources, sheltering cover, 

specialized breeding habitat, and predator occurrence (Spencer 2012, Gerber et al. 2019). Site 

fidelity would therefore be expected as a common strategy to promote fitness. Indeed, site 

fidelity is well documented for many animal species (Craighead et al. 1973, Berry and Eng 1985, 

Fischer et al. 1993, Baylis et al. 2017, Smedley et al. 2019, McLaren and Patterson 2021) but 

documented associations between fidelity and fitness measures are rarer (Bradshaw et al. 2004, 

Forrester et al. 2015). If spatial fidelity is a fundamental adaptive trait for a wildlife species, then 

fitness consequences of differential fidelity should be evident. 

Various factors can modulate the degree of site fidelity including landscape disturbance, 

habitat degradation, weather conditions, and phenological status. The strength and consistency of 

site fidelity at the population level may be weakened by anthropogenic disturbance impacting 

individual animals in seasonal home ranges (Webb et al. 2011). Energy development and 

associated roads have been shown to alter movement and space use of a variety of taxa, 

including sage-grouse (Doherty et al. 2008, Gibson et al. 2018), prairie-chickens (Winder et al. 

2014), elk (Webb et al. 2011) and caribou (Tracz et al. 2010). Timber harvest can influence 

calving site fidelity in moose possibly via a response to prior reproductive success (Welch et al. 
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2000) and anthropogenic landscape disturbance can attenuate otherwise strong site fidelity of elk 

(Edge et al. 1985, Webb et al. 2011). When experiencing disturbances on the landscape 

individuals may alter patterns of use-intensity (use points per unit area) within established home 

ranges or shift ranges entirely (Andersen 1991, Linnel and Andersen 1995, Tracz et al. 2010, 

Little et al. 2016). During severe winters, for example, animals may relocate to areas with more 

suitable conditions that may be fully or partially outside of typical seasonal home ranges, thereby 

altering patterns of site fidelity (Parker et al. 1984, Miquelle et al. 1992, Newton et al. 2017). 

Site fidelity is a fundamental ecological phenomenon that is entangled with but 

conceptually distinct from much habitat selection theory and can vary in a complex fashion due 

to several factors (Piper 2011). Animals may exhibit differential fidelity to landscape features 

such as roosts, bedding sites, watering holes, salt licks, dens, or nest sites within seasonal home 

ranges or territories. In some cases the degree of fidelity among seasonal use areas may be 

similar and in other cases the degree may differ substantially among seasons (Lafontaine et al. 

2017). Consequently, site fidelity can operate at multiple ecological levels ranging from home 

range maintenance to the reuse of specific forging sites (Wolf et al. 2009). Therefore, changes in 

patch-level fidelity relative to landscape disturbance or weather may be due to the same trait 

which drives higher-level and higher profile movement phenomena such as seasonal migration. 

Seasonal or behavioral patterns of habitat use may also be influenced by biological factors such 

as body size or the reproductive status of females (Miquelle et al. 1992, Bjorneraas et al. 2011, 

Bjørneraas et al. 2012, Gelling et al. 2022) which may cause site fidelity to vary over time for the 

same individual. 
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Despite the established importance of site fidelity for wildlife, fidelity is often ignored 

when characterizing and evaluating the quality of habitat for conservation and management 

(Piper 2011). Tools commonly used to evaluate wildlife-habitat associations, such as resource 

selection functions, do not incorporate site fidelity through integral model structure and end users 

rarely attempt to extend models and account for site fidelity (Piper 2011). Without understanding 

how fidelity modulates wildlife responses to landscape conditions we may misinterpret 

associations between habitat conditions and population performance which are important for 

effective population management (Morrison et al. 2006). For instance, beyond documenting site 

fidelity for sage-grouse (Berry and Eng 1985, Dunn and Braun 1985, Fischer et al. 1993), further 

links with space use or fitness are needed because sage-grouse are a species of substantial 

conservation concern. 

Sage-grouse have proven to be a species sensitive to anthropogenic disturbances exacted 

by an ever-increasing human population (Walker et al. 2007, Harju et al. 2010, Lebeau et al. 

2014). Individual- and population-level sensitivity to anthropogenic habitat alteration is likely 

owing to population dynamics that require optimal performance under a suite of landscape-

condition compositions and interrelationships as well as metapopulation dynamics that bolster 

local populations via immigration (Crist et al. 2015). If strong site fidelity exists for a sage-

grouse population then individuals may become anchored to areas where habitat quality has 

become poor after disturbance which could result in depressed vital rates (Fischer et al. 1997, 

Connelly et al. 2000a, Lockyer et al. 2015, Foster et al. 2019). In other words, fidelity to a 

particular site may result in an ecological trap after a disturbance (Robertson and Hutto 2006, 

Hale and Swearer 2016). Compared to other prairie-grouse, sage-grouse productivity and rates of 
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population turnover are lower and recovery from population declines may be comparatively slow 

(Allen 1962, Connelly and Braun 1997, Connelly et al. 2011a). Therefore, to maintain viable 

populations it is important to understand if and how site fidelity influences vital rates for sage-

grouse. Furthermore, a greater effort to document the fitness consequences of site fidelity on 

wildlife populations will result in a more comprehensive understanding of wildlife ecology. 

We hypothesized that spatial fidelity that is common in sage-grouse would influence 

reproductive success. Specific predictions that resulted from our hypothesis were that: 1) spatial 

fidelity would be evident in our sage-grouse population during breeding, 2) fidelity would 

influence breeding success, and 3) explicit modeling of fidelity would attenuate or alter the 

apparent effects of commonly evaluated landscape conditions. Disturbance, habitat quality, and 

individual variability or plasticity in fidelity behavior are expected to cause heterogeneity of 

nesting area fidelity among individuals. However, no substantial anthropogenic disturbances 

occurred in our study area before or during our research, so we did not expect any major fidelity-

fitness mismatches. We quantified individual-level space- and time-use and examined 3 facets of 

fidelity-related movement properties to establish fidelity behavior in sage-grouse. Differential 

use-intensity across the landscape indexed where sage-grouse were spending their time. Our 

main objective was to test the following statistical hypothesis that derives from our conceptual 

hypothesis and predictions: nesting-area fidelity, as measured by indices of space- and time-use, 

should be positively associated with daily nest survival and the influences of landscape 

conditions (e.g., habitat) on survival may be diminished after accounting for fidelity.  
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Study Area 

Our study occurred over a 425,000-ha area in southern Valley County in north-central 

Montana, USA (47.66258 N to 48.44968 N, 106.43546 W to 107.44770 W). The area was within 

Glaciated Northern Grasslands and North Central Highlands (Cleland et al. 1997, McNab et al. 

2007) and within the sage-grouse Great Plains Management Zone 1 which corresponds to the 

Silver Sagebrush Province (Connelly et al. 2004, Stiver et al. 2006). Land cover in the area 

consisted of approximately 49% big sagebrush steppe, 20% Great Plains mixed-grass prairie, 8% 

cultivated crops, 6% mat salt shrubland, 2% Great Plains riparian, and 2% Great Plains 

woodland savanna (Anderson et al. 1976, Comer et al. 2003). Additional limited land cover types 

included greasewood flats, shale badlands, and Great Plains wooded draws and ravines 

(Anderson et al. 1976, Comer et al. 2003). The area was characterized by high annual variation 

in average monthly temperature (-10.1 °C to 21.7 °C) and low mean annual precipitation (29.6 

cm), with over half occurring May – July (Arguez et al. 2010). Approximately 75% of the study 

area was in public ownership, managed predominately by the U.S. Bureau of Land Management 

(BLM), as well as the U.S. Fish and Wildlife Service (USFWS, Charles M. Russell National 

Wildlife Refuge [CMR]), and the State of Montana. The area was situated just south of the 

northernmost extent of the Wyoming big sagebrush (Artemisia tridentata wyomingensis) 

distribution in Montana; silver sagebrush (A. cana) becomes the only woody Artemisia species 

occurring farther north. The area, located at the northeastern edge of the sage-grouse distribution, 

represents a transition zone between mixed-grass prairie and sagebrush steppe ecosystems which 

makes it unique in comparison to many other sage-grouse habitats (Dinsmore et al. 2002, 

Moynahan et al. 2007). 
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Our population of sage-grouse represents an important component of a larger 

metapopulation; however, basic information on the population ecology of this population is 

lacking. The study population represents a core component of the broader northern Montana 

population (NMP) distributed throughout north-central Montana, southeastern Alberta and 

southwestern Saskatchewan (Garton et al. 2011, USFWS 2013). Minimum male counts at leks 

within the NMP were reported to be approximately 2,700 males and the population is thought to 

be one of the few remaining stable populations of sage-grouse (Garton et al. 2011). The southern 

segment of the NMP lies below the Milk River and was designated a Priority Area for 

Conservation (PAC [corresponds to BLM Priority Habitat Management Area]) which was key 

habitat identified by state or BLM conservation planning efforts (USFWS 2013). 

Methods 

Field Methods 

Sage-grouse Captures During April–May, 2018–2019, we captured 89 (48 in 2018, 41 in 

2019) female sage-grouse using spotlighting techniques (Giesen et al. 1982, Wakkinen et al. 

1992). We made a concerted effort to attain a representative sample by spreading captures 

around 3 separate watersheds in our study area. Upon capture we banded females with uniquely 

numbered leg bands. We aged females as adult or yearling by examining the appearance of 

primary feathers 9 and 10 (Braun and Schroeder 2015). We attached a VHF-equipped 22-g solar 

powered Global Positioning System (GPS) Platform Transmitter Terminal (PTT; model GT-

22GS-GPS, GeoTrak, Inc., Apex, NC, USA) to each of 86 birds using a rump-mounted harness 

(Rappole and Tipton 1991, Bedrosian and Craighead 2007). All PTTs were programmed to 

collect 4–10 locations every day and upload data every 1.5–3.0 days to the Argos satellite 
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system. PTT performance was specified separately for different seasons and the programming 

was slightly adjusted for 2019 based on observed 2018 PTT performance; PTT programming can 

affect GPS data transmission success. Our most aggressive programming for a season was 15 

March – 1 September where 2018-batch PTTs obtained up to 10 fixes every day and uploaded 

data to the Argos system approximately every two days. At a minimum, location fixes were 

collected at approximate 6-hr intervals regardless of programming season or PTT batch. All 

animal handling was approved under Montana State University’s Institutional Animal Care and 

Use Committee (protocol # 2017-57). 

Sage-grouse Monitoring The PTTs had an approximate 3-year lifespan and movement 

data from equipped sage-grouse was recorded until female mortality or loss of a PTT. During the 

breeding seasons of 2018, 2019 and 2020, females were monitored by downloading GPS fixes 

and other PTT sensor data from Argos system servers every 3–5 days. During the breeding 

season of 2021, PTT sensor data were downloaded and reviewed monthly using the sub-daily 

location histories. We used multiple lines of evidence to infer female status. Localization of a 

PTT indicated either a nesting female, a dead female, or a dropped PTT. The PTTs were 

equipped with an activity sensor which indicated if the PTT was experiencing motion; static 

activity sensor readings indicated a mortality or dropped PTT. Visitation of nest sites can lead to 

observer-induced bias in vital rate estimates (Gibson et al. 2015), therefore we only visited 

localization sites if a mortality was suspected. In most cases incubation recesses (movements by 

females off nests) were evident in the GPS fix data and helped separate mortalities from nests 

(Coates and Delehanty 2008, Dzialak et al. 2011). If a mortality was indicated, we verified this 

with a field visit and recorded the condition of carcass remains including evidence of predation 
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(Blomberg et al. 2013). We estimated the date of incubation initiation for each confirmed nest by 

reviewing the GPS data. Nest fate was verified in the field when a female had moved off the nest 

for ≥ 3 days. Nests that failed just prior to incubation were verified in the field if ≥ 2 locations 

accrued in the same location due to periodic visits by a female. After nest abandonment, we 

located nests and recorded evidence regarding nest fate. Hatching was indicated by eggs with 

detached membranes and eggshells that were consistent with being pipped by chicks (Rearden 

1951, Sargeant et al. 1998). We considered a nest successful if we found ≥ 1 egg had hatched. 

Nest Survival Predictor Variables 

Movement Properties Spatial fidelity of animals has previously been quantified as the 

mean distance between consecutive locations within a period or the distance between mean 

coordinates of different periods (Garrott et al. 1987, Fischer et al. 1993, Popp et al. 2011, Brough 

et al. 2017, McLaren and Patterson 2021). Additionally, nest-site fidelity has been examined by 

comparing observed distances among consecutive nests to a statistical null distribution 

representing random nest placement (Holloran and Anderson 2005). We chose to use more 

formalized movement properties including number of points accrued in short-term home ranges, 

elongation of home ranges, and overall use-intensity to evaluate site fidelity because detailed 

movement properties are interpretable in the context of the time-series movement process of 

animals (Barraquand and Benhamou 2008, Benhamou and Riotte-Lambert 2012, Lyons et al. 

2013, Bracis et al. 2018).  

Use-intensity captures both the degree of revisitation and total residence time in areas and 

represents a time-varying utilization distribution which is related to space use and resource 

selection (Millspaugh et al. 2006, Hooten et al. 2013, Van Moorter et al. 2016, Fieberg et al. 
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2021). Moreover, use-intensity is an index of site familiarity (time spent in an area) which is a 

hypothesized link between spatial fidelity and fitness (Yoder et al. 2004). Individual-level use-

intensity increases as more time is spent in a unit area so major fluctuations in use-intensity are 

also due to the size of short-term home ranges during nesting with smaller home ranges resulting 

in higher use-intensity, given a fixed degree of fidelity. Therefore, examination of other 

movement properties can help differentiate between areas with elevated use-intensity due to 

revisitation vs. due to contracted space use at nest sites. Differential counts of previously visited 

points in short-term home ranges (enclosed points) may indicate switching between space-use 

strategies (larger or smaller use area) which would increase exposure to predators (greater spatial 

dispersion) and may indicate lower quality incubation recess habitats. Furthermore, lower 

number of enclosed points for a given use-intensity may indicate coarser spatial- and temporal-

scale aspects of fidelity such as switching nesting areas entirely, thereby diminishing familiarity 

(use-intensity). Eccentricity of home ranges further discriminates among movement behaviors at 

nest sites by quantifying fine-scale fidelity. For instance, high eccentricity indicates a consistent 

vector of movement to and from a nest and incubation break area. Fidelity to an incubation break 

area may also restrict a female’s use area which would limit exposure to predators (Coates and 

Delehanty 2008). 

Unless otherwise noted, we used the statistical computing software R for data 

manipulation and analyses (R Development Core Team 2013). To quantify coarse-scale 

movement properties we segmented space use by each sage-grouse into space-time local hulls 

(minimum convex polygons [MCPs]). To prevent bias in hull construction due to irregular 

sampling we subset relocations to 6-hour sampling intervals (Lyons et al. 2013). We used the R 
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package T-LoCoH to process the 6-hr regular-trajectory data and quantify spatiotemporal 

patterns of sage-grouse movements including: hull-enclosed points, area of hulls, and hull 

eccentricity. We calculated eccentricity using the shape parameters of a minimum closing ellipse 

for each nearest-neighbor-point set (Lyons et al. 2019). Eccentricity varies from 0 to 1 with 0 

being a perfectly round ellipse and 1 being a severely elongated linear ellipse; ellipse elongation 

indicates directional movements. We calculated hull area as the area of each hull polygon; hull 

area provides a geometric delineation of space use and is analogous to a home-range area 

calculated for brief periods. We calculated number of enclosed points accrued up to the 

maximum time of each home range observation; every short-term home range has a timespan 

and we calculated enclosed points as all prior and current points enclosed by each home range. 

We calculated use-intensity by dividing enclosed points by the short-term home range area. Our 

method of calculating number of enclosed points is a modification of standard T-LoCoH output 

(Lyons et al. 2019) which counts the enclosed points that have accrued over the period of a 

trajectory (duration an individual is monitored). 

We also calculated the net distance of every relocation away from the first nest site 

known for each female. If a female never initiated a nest, then we used the first location in the 

lifetime trajectory as the start point. First locations were near nesting areas because females were 

captured during breeding season. Our net distance variable accounts for differential seasonal 

space use and seasonal home-range fidelity by quantifying distance from the initial nesting 

region of each female. We used distance from first nest to quantify breeding season fidelity with 

the expectation that distance from the nesting region would remain relatively low during the 

reproductive phase of female sage-grouse. 
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Previous research indicates that the scale at which variation in movement properties are 

calculated can influence observed relationships between movement, space-use and resource 

selection (Van Moorter et al. 2016). Our hull-based (home range) movement metrics represent 

movement properties at coarser scales that have been associated with sage-grouse region use 

(Doherty et al. 2008, Doherty et al. 2010, Fedy et al. 2014, Walker et al. 2016). However, the 

scale of our analysis is largely dictated by the movement behavior of individuals which in this 

case is restricted to sage-grouse nesting behavior. 

Hydrology Water can be an important seasonal resource for sage grouse and may 

influence distributions and seasonal space use (Donnelly et al. 2016, Donnelly et al. 2018). 

Water also shapes the landscape and may create terrain features such as runnels used for loafing 

or larger gullies with steep banks in which coyotes place dens. To quantify the distribution of 

stream channels on the landscape, we analyzed a 1/3rd arc second scale digital elevation model 

(DEM) using terrain analysis tools in the System for Automated Geoscientific Analyses 

(www.saga-gis.org, Version: 7.6.4). We performed a hydrologic analysis of the DEM to generate 

a stream channel network in our study area. Stock ponds were abundant in our study area and can 

influence vegetation structure by influencing grazing patterns of cattle. Available water body 

data layers did not correspond well with recent aerial imagery of our study area so we developed 

a raster layer delineating water bodies by combining spatial information about water body 

extents from multiple sources using a multiple criteria analysis (Gao 2009) (see Appendix G, 

Table 17, and Appendix C). 

Vegetation Vegetation characteristics are often associated with space-use and nesting 

success of female sage-grouse (Holloran et al. 2005, Hagen et al. 2007, Doherty et al. 2010, 
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Dahlgren et al. 2015), but see (Smith et al. 2020). Available geospatial vegetation data did not 

correspond well with the ground cover in our study area, so we developed 8 vegetation related 

variables: barren cover, LANDFIRE sage cover, lowland NDVI, medium shrub cover, radius of 

variance of vegetation biomass, sagebrush cover, vegetation biomass, and vegetation height (see 

Appendix G, Table 17, and Appendix C). 

Terrain Intensity of landscape area use by female sage-grouse has been associated with 

terrain features during multiple seasons (Aldridge and Boyce 2007, Aldridge et al. 2012, Walker 

et al. 2016, Newton et al. 2017). Terrain-analysis landscape condition variables most used by 

wildlife researchers include slope, aspect, topographic position, ruggedness, and relative 

elevation but other terrain related variables may be more biologically interpretable. We used a 

1/3 arc-second scale digital elevation model (DEM) and SAGA GIS to calculate 14 terrain 

metrics (SAGA version 2.3.2, www.saga--gis.org). Variables derived from terrain analyses tend 

to be highly collinear, so we did not expect to use all 14 but created them to have a 

comprehensive set to evaluate. Our terrain metrics were topographic ruggedness index, vector 

ruggedness measure, topographic position index, topographic wetness index, total insolation, 

mid-slope position, normalized height, standardized height, multi-resolution valley bottom 

flatness, morphological protection, multi-resolution ridgetop flatness, slope height, valley depth 

and wind exposition (see Appendix G, Table 17, and Appendix C). 

Temporal Modulators Female age, nest age, nesting attempt, and year are commonly 

hypothesized to influence daily nest-survival rates (Dinsmore et al. 2002, Rotella et al. 2004, 

Moynahan et al. 2007, Webb et al. 2012, Doherty et al. 2014) and used to model time-dependent 

process variance in nest survival. Effects of female age, nest age, nesting attempt, and year are 
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not easily interpreted with respect to biological mechanisms influencing nest survival because 

the mechanism is not observed. However, a well-supported candidate model with one or more of 

these predictors may hint at processes influencing nest survival. For instance, nests for precocial 

birds in a risk set may see risk decrease through time (as nests age) because nests in riskier 

environments fail earlier (Klett and Johnson 1982, Dinsmore et al. 2002). More importantly, 

female age, nest age, and year may be positively collinear with residence time, revisits, duration, 

and therefore use-intensity at various temporal scales. Consequently, we evaluated or controlled 

for female age, nest age, and year to prevent confounding of statistical associations between 

space- and time-use movement properties and daily nest-survival rates. We calculated female age 

in daily increments by assuming an individual was hatched June 15 one or two years prior 

dependent on being identified a yearling or adult at capture. We did not expect daily aging 

during nesting would influence nest survival, so we discretized daily ages into four categories 

ranging from one to six years of age using cluster analysis. Ages were therefore underestimated 

for many females captured as adults because they were specified as 2 years old but could have 

been > 2 years old. We also calculated mean daily temperature, precipitation (Oregon State 

PRISM project, Hart and Bell (2015)) and length of day as variables to account for variation in 

daily nest-survival rates due to weather and seasonality. 

Confirming Fidelity Behavior 

We evaluated breeding-season fidelity behavior in our sage-grouse population by fitting a 

generalized additive model to a time series of log-transformed distances from first nests of 

individuals (NDnest) using our complete year-round dataset of short-term home ranges. NDnest 

within and among individuals should not exhibit seasonal periodicity if seasonal fidelity behavior 
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is not operating. Sage-grouse females that move according to the ideal free distribution (Fretwell 

and Lucas 1969, Piper 2011) or correlated random walks (Turchin 1998) would not be expected 

to consistently return to the same breeding patches. For instance, a nomadic sage-grouse might 

exhibit temporally increasing or other non-seasonal changes in distance from a reference point 

(Bunnefeld et al. 2011).  

We modeled NDnest as a function of study time (hour of study) while covariate 

correcting for precipitation, normalized height, home range area, number of home-range 

enclosed points, fine-scale sagebrush cover, bare ground, and NDVI. All predictor variables were 

modeled with thin plate spline smooths and we included a random effect of individual ID to help 

account for repeated measures on individuals. We evaluated the complexity of our smooth terms 

by iteratively fitting our model and using function gam.check() of R package mgcv to check 

adequacy of basis dimension (k) choices. We increased k until increasing it did not substantially 

change the expected degrees of freedom of the smooth terms (Wood 2017). 

Reconciling Movement Properties and Landscape Conditions 

We calculated landscape-condition summary statistics for each sage-grouse short-term 

home range at multiple scales. We calculated zonal summary statistics as the mean, coefficient of 

variation (standard deviation/mean [CV]), and robust coefficient of determination (median 

absolute deviation/median [rCD]) of all landscape condition pixels within each home range. We 

calculated CV and rCD because either may better represent landscape-condition variability and 

we had no a priori information. We also calculated mean values for 30-m and 100-m radius patch 

footprints centered on the points from which each home range was delineated, thereby capturing 

finer grain use within the home ranges. We selected the three aggregation scales of the covariates 
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(home range, 100 m, 30 m) to help represent the multiscale nature of sage-grouse habitat 

responses. Zonal statistics calculated at the 30-m and 100-m extent for sets of points composing 

each home range were aggregated by home range using the ‘purrr’ package in R (Henry and 

Wickham 2020). For instance, the CV of sagebrush cover means from 18 100-m radius polygons 

representing use patches in a home range was calculated to estimate the 100-m home range CV 

of sagebrush cover use in a single home range. Our hull-wise aggregation scheme was based on 

nearest neighbor sets associated with each short-term home range (Lyons et al. 2019) and 

allowed multiple landscape-condition grain sizes (home range, 100 m, 30 m) and summary 

statistics (mean, CV, rCD)  to be evaluated. 

Statistical Analysis 

Modeling Strategy We lagged the hull-wise (short-term home range) summary statistics 

of all landscape conditions and movement properties by 20 home range observations to ensure 

that the timespan of home ranges did not exceed the endpoint of an observation interval. In cases 

where no female sage-grouse fixes were missing, the 20-observation lag represents a 20 × 6 = 

120-hour time lag of home range parent points and if there were missing locations the time lag is 

somewhat longer. Time intervals represented by each home range observation always temporally 

bracket a home range parent point and are a function of female movements and T-LoCoH tuning 

parameters (Appendix A). Our time lag helped ensure that landscape conditions and movement 

properties sampled at each home range observation represent spatial and temporal aggregates 

(smooths) of landscape use and movement behavior just prior to and generally not beyond 

observation timestamps. In other words, space- and time-local smoothing represented the local 

past and present instead of the local past and future relative to observation timestamps. 
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Sub-daily changes in movement properties were minor given central-place foraging 

behavior of nesting females because we calculated movement properties with 6-hr regular-

trajectory data that updated at 6-hr increments based on space- and time-use of individual 

females. Therefore, we calculated single mean home range observations from the ≤ 4 lagged 

movement and landscape condition observations typically available each day. Aggregating to 

achieve daily observations eased the computational burden of modeling the effects of time-

varying predictor variables and modeling 6-hr nest-survival rates was not necessary to evaluate 

our hypothesis. 

We modeled daily nest survival response to time-varying predictors using a standard 

regression modeling strategy where we first performed variable selection and then model 

selection to identify the best supported model from a candidate set. We deviated from standard 

regression modeling strategy by fitting sets of generalized linear models (GLM) and generalized 

additive models (GAM). In both cases our models were logistic regression models modified to 

logistic-exposure models that modeled daily nest survival data (0 = failure, 1 = success) as a 

function of variables hypothesized to influence survival. We modified the logit link function to 

model daily nest survival following Shaffer (2004). We matched daily predictor observations to 

daily nest-survival data using function tmerge(), and tdc() of R package Survival. We used both 

GLM and GAM model types because each have respective strengths and weaknesses which we 

assessed against our dataset and objectives (Faraway 2006, Zuur et al. 2007, Van Der Burg et al. 

2010, Harrell 2015, Wood 2017). For instance, the relationship between movement properties 

and daily nest survival might not be linear on the log odds scale as is assumed by GLMs. 

Conversely, GLMs provide standard coefficient estimates (i.e., effect sizes and uncertainty 
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estimates [e.g., dot-and-whisker plots]) and conditional effects plots; GAMs do provide 

nonstandard alternatives and parametric terms can be included. Furthermore, some datasets are 

not substantial enough to accommodate complex model structures facilitated by GAMs, but ours 

was. 

Variable Selection Collinear predictor variables can destabilize regression model 

estimates and confound interpretation so we calculated Pearson correlation coefficients and 

variance inflation factors (VIF) for all explanatory variables and sequentially eliminated 

variables exceeding user specified thresholds (Zuur et al. 2007, Braak and Šmilauer 2012, 

Legendre and Legendre 2012, Borcard et al. 2018). We accomplished correlation and VIF-based 

variable elimination using an R script incorporating the auto_cor() and auto_VIF() function 

which allowed us to prioritize keeping variables of primary interest and highest interpretability 

from sets of collinear variables (Benito 2021). For instance, we chose to specify that use-

intensity be included with higher priority than other movement properties because it integrates 

multiple aspects of space- and time-use and can therefore highlight areas where fidelity was 

occurring. We specified r < |0.6| and VIF < 2.5 and acknowledge that our thresholds are 

somewhat aggressive but we do not consider collinearity to be a trivial impediment to sound 

regression inference and GAMs are particularly sensitive to collinearity issues (Wood 2017). In 

some cases, we transformed predictor variables after initial variable selection because of model 

convergence problems (Table 7). We reconducted our variable selection procedure after 

transforming variables because transformations can alter collinearity. 

Model Selection All 103 predictors that we calculated to represent landscape conditions 

and movement properties during nesting could influence nest survival and many are based on 
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published evidence (See Appendix G, Table 17, and Appendix C). VIF and Pearson correlation 

screening reduced the number of variables in our GLM and GAM models but retained 16 

predictors. An all-subsets regression would result in 2n models where n is the number of 

predictors considered. However, fitting 216 = 65,536 models is not recommended (Burnham and 

Anderson 2002) or computationally reasonable so we conducted all-subsets regression separately 

for movement, temporal modulator, vegetation mean, vegetation variability, and terrain 

predictors. We then merged the all-subsets results of each predictor-type set and examined 

variable importance and model ranks using the 95% confidence sets (Burnham and Anderson 

2002) of the merged GLM and GAM sets. Finally, our interpretation of the 95% confidence sets 

informed our construction of a final model. 

We made multi-model inference using model weights, and variable importance scores 

from the GLM and GAM merged sets. We employed model selection and multi-model inference 

methods based on Kullback-Leibler information loss (Akaike’s information criterion [AIC]), 

small-sample AIC (AICc), difference-transformed AICc values (Δi), and normalized Akaike 

weights (wi) (Burnham and Anderson 2001, Burnham and Anderson 2002). We summed wi 

across candidate models that contain a given predictor (j) to quantify variable importance (w+(j)). 

We also used Akaike weights to select a GLM and a GAM 95% confidence set of models 

(Burnham and Anderson 2002). We used function dredge(), merge(), mod.avg(), and sw() of R 

package MuMIn to calculate AICc, Δi, wi, and w+(j) for the GLM and GAM model sets. 

An important regression modeling consideration is whether predictors represent fixed or 

random effects. We initially used function glmer() of R package lme4 to include a random 

intercept for individual ID in some candidate GLM models because many females had > 1 nest 
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within and across years which represents repeated measures on individuals (Rotella et al. 2004). 

Many GLM model structures did not accommodate random intercept terms for individual 

because the models did not converge. However, we explicitly modeled individual heterogeneity 

in daily nest-survival rate due to nesting attempt, weather, movement activities, vegetation, and 

terrain. Modeling factors that can contribute to individual heterogeneity helps alleviate issues 

due to nonindependence of data for females that contribute more than one nest within and across 

years (Rotella et al. 2004). We fitted all GLM models without random intercept terms for 

individual using function glm() of R package stats. We used function bam() of R package mgcv 

to fit all GAMs. We used bam() instead of gam() because the fitting procedure accommodated 

use of a modified link function without extensive custom coding. We withheld using an 

individual-ID random effect from GAM all-subsets regression to limit computational burden but 

included it in the GAM final model. 

Finally, we considered biologically justified interaction terms for variables identified for 

inclusion in our final model. Specifically, we included an interaction between number of 

enclosed points and use-intensity to help explain how different combinations of the movement 

properties affect daily nest survival. We added the interaction between use-intensity and 

enclosed points because finer temporal-scale revisitation and residence time, that largely drive 

use-intensity (Chapter 2), may differentially influence daily nest survival depending on the 

degree of coarser temporal-scale revisitation (intermittent use). Enclosed points can help 

differentiate use-intensity fluctuations due to fine-scale movements (contracted home ranges) 

versus coarser scale recursive movements (revisitation).  
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Results 

During May – June 2018 and April 2019, we fitted 86 of 89 captured female sage-grouse 

with GPS transmitters. We collected 192,640 geographic coordinates of 86 female sage-grouse 

during 2018-04-24 – 2022-04-14 which encompassed 4 complete annual cycles of sage-grouse. 

The median (IQR) number of locations per female in the complete dataset was 1,410 (2,933). 

After resampling trajectories to 6-hr intervals and removing individuals with inadequate 

relocation histories our movement property calculations used 110,024 relocations of 74 females. 

The median (IQR) number of locations per female for our year-round movement analysis was 

1156 (1940). 

We located 185 nests of 76 individuals during the nesting seasons of 2018 – 2021. Mean 

number of nests per female-year was 1.37 (SD = 0.53, n = 135). Mean date of incubation 

initiation for firsts nests was 04 May (range = 17 April – 03 June, n = 135). Mean date of 

incubation initiation for second nests was 24 May (range = 05 May – 08 June, n = 47). Mean 

date of incubation initiation for third nests was 02 June (range = 25 May – 07 June, n = 3).  

Evaluating Fidelity Behavior 

Our fitted GAM model that evaluated the relationship between distance from first nest 

(NDnest) and study time was consistent with a regular seasonal pattern of change in NDnest and 

fidelity to nesting areas (Appendix G, Figure 56). Model fit (adjusted R2  = 0.78) and model 

diagnostics were good (Appendix G, Figure 60). Study time and home range area required the 

highest basis dimensions (k) indicating that those variables have a complex relationship 

(seasonality) with NDnest (Appendix G, Table 18). All smooth terms except precipitation were 

statistically significant (Appendix G, Table 18). NDnest decreased as number of enclosed points 
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increased, normalized height increased, vegetation biomass increased, and area decreased 

(Appendix G, Figures 57–59). NDnest increased as proportion bare ground became very low or 

became very high (Appendix G, Figures 58 & 59). 

Nest Survival 

We linked lagged movement properties from our year-round tracking data to daily nest 

survival observations. Five individuals, representing 5 first nests, were completely removed from 

analysis because movement data was lagged to a time prior to GPS deployment (no movement 

properties) and the individuals never contributed another nest. Two other individuals each had a 

nest removed due to data lagging but future nests by those individuals were included. One nest 

was removed because a female vanished during nesting so lagging resulted in an incomplete 

record (missing movement property data). 

Correlation and variance inflation factor screening identified 16 suitable continuous-scale 

predictors (Table 7) that we included in both the GLM and GAM all-subsets model sets. To 

control for potential confounders, we also included female age, nest age, and nesting attempt in 

both sets. Our female-age factor had 4 age-range levels and was collinear with year, so inclusion 

of female age precluded using year to represent the passage of time. 

The 95% confidence set of models from our GLM and GAM merged sets both indicated 

that models containing use-intensity, enclosed points, and eccentricity had relatively high Akaike 

weights (wi). Models with use-intensity, number of enclosed points, and eccentricity ranked the 

same (1, 2, 3) in GLM and GAM merged candidate sets (Table 8). The GLM model with the 

most support in the data (wi = 0.47) was a movement model with use-intensity as the only 

variable (Table 8). The GAM model with the most support in the data (wi = 0.39) was a 
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movement model with a smooth term for use-intensity (Table 8). No landscape conditions were 

supported as influential on daily nest survival (Table 8). For instance, the vegetation model with 

most support in the data (wi = 0.021) was a model with a smooth term for radius-of-variance of 

vegetation height, radius-of-variance of vegetation biomass, and variability of vegetation 

biomass. The season and nest phenology model with most support in the data (wi = 0.006) had a 

smoothing term for daylength, precipitation, and nest age. 

All competing models in both 95% confidence sets were within 2 AICc units of the top 

model (use-intensity). Additional variables were uninformative in our GLM confidence set; one 

additional variable penalized AICc by ≤ 2 units (Arnold 2010). However, one additional variable 

in GAM models contributed more degrees of freedom per variable (≈ 5–6) so being within 2 

AICc units was not indicative of noninformative variables. In other words, adequately capturing 

non-linear functional forms of the predictors changed eccentricity and enclosed points from 

uninformative to informative (Table 8). Nevertheless, AICc values and model rankings were 

similar in all GLM and GAM 95% confidence set models (Table 8). 

Because we also detected non-linear functional forms during model checking of the final 

GLM model, we make inference primarily from our final GAM model: log(s/1-s) = s(ID random 

effect) + s(nest age) + s(eccentricity) + s(enclosed points) + s(use-intensity) + ti(use-intensity, 

enclosed points), where s, s(x) and ti(xa, xb) represent survival rate, thin-plate spline smoothing 

terms, and tensor product spline terms, respectively. For comparison of GLM and GAM models 

we present results from our final GLM model in Appendix G, Figure 61. 

Daily nest survival rate was strongly influenced by sage-grouse movements where use-

intensity, and eccentricity of nesting home ranges had a positive association with daily nest 
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survival (Figure 23). Holding other covariates constant (number of enclosed points = 104, nest 

age = 15, eccentricity = 0.62), daily nest survival changed from 0.91 (CI = 0.85 – 095) to 0.98 

(CI = 0.96 – 0.99) when log(use-intensity) was 5 or 10, respectively (Figure 24). Nest age was 

not well supported as influencing daily nest survival rate but we include nest age in our final 

model to control and illustrate its influence on use-intensity. Nest attempt and female age were 

not well supported (Table 8). 

Discussion 

Our results demonstrate that 1) female sage-grouse have strong fidelity to nesting 

locations, and 2) nest survival of sage-grouse is strongly associated with movement properties 

that indicate fidelity. Our study is the first to identify a positive relationship between fidelity to 

nesting locations and daily nest survival of sage-grouse. We also documented a positive 

association between increased directionality of movement away from nests and increased daily 

nest survival rates which demonstrates the importance of movement patterns at nest sites. 

Moreover, the positive association between fidelity and nest survival was a function of 

individual- and time-varying space use strategies of females while incubating and not vegetation 

related habitat conditions. The effects of landscape vegetation conditions often deemed important 

for sage-grouse nesting ecology were not well supported; a result that challenges contemporary 

sage-grouse management that ignores the consequences of fidelity. 

Affinity, Fidelity, Familiarity and Fitness  

Area fidelity is synonymous with area familiarity if repetitive use occurs in regions that 

do not change drastically between or during visits. Elevated values of use-intensity in nesting 
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home ranges partly result from repeated and extended use of an area within and among years. 

Therefore, the positive association between use-intensity and daily nest survival supports our 

hypothesis that nesting area fidelity has a positive influence on breeding success. 

A behavioral driver of fidelity is affinity, an unobservable trait which results in observed 

fidelity. We define affinity as the presumed liking and draw that an animal experiences for a 

place independent of repeated evaluations of a place. Therefore, affinity enforces fidelity which 

promotes familiarity and consequent fitness advantages. A positive influence of nesting-area 

fidelity on daily nest survival may result from familiarity due to consistent repeated use, return to 

use from an alternate nesting area, or movement to a previously used non-nesting area. 

Consistent repeated use was the most common form of fidelity for our study population and is 

clearly distinguished from an active area-selection decision process (non-oriented movement) 

where site switching would be common, assuming other suitable areas are available. We 

generally cannot discern the degree of spatial fidelity exhibited by sage-grouse in other studies 

but caution that if fidelity behavior is exhibited then ignoring it may compromise study designs 

where space use is assumed to be solely a function of active resource selection decisions by sage-

grouse (Doherty et al. 2008, Doherty et al. 2010, Aldridge et al. 2012, Fedy et al. 2014, Smith et 

al. 2014, Kirol et al. 2015, Gibson et al. 2016, Walker et al. 2016, Gibson et al. 2017). 

Consistent repeated use of nesting areas indicates that female sage-grouse developed 

affinity for their nesting areas prior to induction into our study. Highly unsuitable grouse-area 

matches may have been largely eliminated during natal dispersal (Yoder et al. 2004) which is 

generally prior to capture of subjects for research. Further research is needed regarding when and 

how sage-grouse females complete natal dispersal (Thompson 2012). We propose that natal 
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dispersal in sage-grouse involves an individual’s development of affinity for a breeding area 

which results in area familiarity and subsequent influence on future reproductive output. If natal 

dispersal involves attraction to areas proximal to natal areas (prior familiarity), then successful 

breeding areas could represent production hotspots where positive feedback in reproductive 

output exists across generations (Freedberg et al. 2005). 

 In contrast to previous research, female age and landscape conditions, including 

vegetation, terrain, precipitation events and seasonality, were not strongly linked to nest success 

and females hatched nests in highly variable environments within the sagebrush-steppe on our 

study area. Therefore, our results indicate that the influence of familiarity on reproductive 

success may have to do with an interaction between individual quality and site quality that is not 

driven by typically measured landscape conditions. Our results offer a possible reason that recent 

syntheses have noted major problems with simplistic interpretation and acceptance of standard 

habitat evaluation studies for sage-grouse (Dahlgren et al. 2015, Smith et al. 2020). Our results 

also have implications for appropriately managing areas to maintain or promote increases in 

important vital rates (Taylor et al. 2012), particularly if natal dispersal involves attraction to natal 

areas (Freedberg et al. 2005, Thompson 2012, Dahlgren et al. 2016a). 

 Identification of nesting home ranges may represent breeding habitat units for sage-

grouse. We propose a nesting-area home range conceptualization of breeding habitat as an 

alternative to the notion that breeding habitat is best inventoried by habitat suitability models that 

ignore individual-level fidelity behavior. Destruction of areas where there is a synergistic area-

by-individual interaction may have a disproportionate influence on population performance 

particularly if site-dependent population regulation is operating (Rodenhouse et al. 1997). 
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Individuals of high quality may drive population dynamics and such individuals may achieve 

high quality through life experience (Carrete et al. 2006) which for philopatric individuals 

equates to experience with an area. Further research is needed to decipher, clarify and expand 

upon the importance of fidelity behavior for the ecology of sage-grouse. 

Presumably, affinity is plastic and can be modulated by landscape conditions or other 

cues such as prior reproductive performance or landscape disturbance (Faille et al. 2010). 

Plasticity in affinity would be adaptive because fidelity does not represent familiarity if 

landscape conditions change drastically due to factors such as land use change, changing 

predator densities, conspecific densities, resource distributions, weather, or anthropogenic 

disturbance. Animals may search out a new use area or change how an area is used as affinity 

diminishes due to either decreased familiarity or familiarity with now undesirable properties of 

an area. Indeed, an inverse relationship between fidelity and disturbance is supported for many 

animal species including sage-grouse (Doherty et al. 2008, Tracz et al. 2010, Webb et al. 2011, 

Winder et al. 2014, Gibson et al. 2018). However, low to moderate degrees of fidelity attenuation 

in response to disturbance may not be enough to compensate for negative impacts. Affinity and 

resultant fidelity behaviors may be deleterious if coarse- and fine-scale habitat destruction and 

degradation create poor habitat in areas where fidelity has been established. 

Consequently, it is important to take landscape heterogeneity and disturbance into 

account when interpreting the ecological significance of fitness impacts due to seasonal spatial 

fidelity. We suggest that sage-grouse and other animals could have evolved individual-level 

plasticity in spatial affinity to promote fitness on landscapes of varying spatial and temporal 

heterogeneity. A related hypothesis is that fidelity genotypes exist that can regulate populations 
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in the face of landscape disturbance in a manner analogous to density genotypes theorized to 

induce density-dependent population regulation (Bergerud and Gratson 1988). Spatial fidelity is 

thought to be advantageous in environments where spatial and temporal heterogeneity of 

resources or risks is low or in environments that are spatially heterogeneous but certain areas 

have predictably high habitat quality (Mueller and Fagan 2008, Wolf et al. 2009, Fagan et al. 

2013). An “always stay” strategy has been suggested for sage-grouse breeding ranges where 

vegetation conditions are heterogeneous but breeding area vegetation can be relatively spatially 

and temporally predictable (Gerber et al. 2019). Predation pressure in breeding ranges may 

further promote area fidelity because predation risk is spatially homogeneous but temporally 

unpredictable so there may be costs or no benefit to seeking an alternate home range (Schmidt et 

al. 2010, Gerber et al. 2019). 

Our data were gathered from a sage-grouse population that was not experiencing 

substantial or recent disturbance which could decouple landscape conditions from otherwise 

adaptive area fidelity. Cattle grazing was the dominant land use in our study area, minimal 

energy development was present, and no substantial wildfires occurred. Cattle grazing at 

moderate intensity is not thought to be a severe disturbance for sage-grouse (Beck and Mitchell 

2000, Crawford et al. 2004, Boyd et al. 2014, Smith et al. 2018). Our results indicate that nesting 

area fidelity confers fitness advantages for the local population under low disturbance regimes. 

Conversely, major disturbances may result in severe declines in population performance if 

extreme site fidelity by individuals causes persistent use of unpredictably altered areas (Connelly 

et al. 1991, Fischer et al. 1993, Connelly et al. 2000a, Lockyer et al. 2015, Abrahms et al. 2018, 

Gerber et al. 2019). In fact, population persistence might only be promoted by area fidelity when 
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coupled with moderate to high temporal autocorrelation of important landscape conditions in 

used areas (Schmidt 2004). 

A commonly invoked alternative to an “always stay” strategy is the “win-stay:lose-

switch” strategy (Switzer 1993, Schmidt et al. 2010, Gerber et al. 2019) which proposes that 

fidelity is only maintained if outcomes promoting fitness occur. Presumably, animals exhibiting 

the “win-stay:lose-switch” strategy should achieve increased fitness from the behavior. Previous 

research indicates that sage-grouse may move larger distances among consecutive nest sites if a 

nest fails but that nest success is initially lower after moving (Bergerud and Gratson 1988, 

Fischer et al. 1993, Schroeder and Robb 2003, Holloran and Anderson 2005, Gerber et al. 2019). 

Initial movement to new nesting areas would result in initially low use-intensity which we found 

is associated with lower nest success. Furthermore, back-to-back nest success in the same area 

would strengthen the positive relationship between use-intensity and daily nest survival. Our 

results are therefore consistent with prior research on fitness consequences of sage-grouse 

nesting area fidelity, but we modeled detailed movement property influences on daily nest 

survival rates. In contrast, most previous nesting area fidelity research has relied on evaluating 

apparent nest success or performing univariate statistical tests (Schroeder and Robb 2003, 

Holloran and Anderson 2005) which are not as rigorous (Mayfield 1961, Dinsmore et al. 2002, 

Rotella et al. 2004, Shaffer 2004). Additionally, most prior research has been concerned with 

distances among nest sites as opposed to our more resolute and biologically complete 

examination of nesting home range use patterns based on multiple movement properties. Simply 

checking for statistical differences in nest proximities grouped by prior fate may miss the 

pertinent scale and timing of fidelity influences on nest success. Despite documentation of 
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somewhat larger distances among nest sites after nest failure we are aware of no evidence that 

nest survival is higher after moving. The dominant pattern in the literature is that fine scale 

philopatric modulation by sage-grouse, if occurring, is not adaptive (Gerber et al. 2019). Female 

sage-grouse have never been documented reusing a nest site (finest scale) but at moderate and 

coarse scales breeding area fidelity is pronounced regardless of prior nest fate. Therefore, the 

fine scale at which the “win-stay:lose-switch” strategy has typically been examined in sage-

grouse has an unresolved mechanism but appears to be neutral or detrimental to the fecundity of 

individuals. Further research is needed to understand why some female sage-grouse sometimes 

move nest sites farther after nest failure and why the behavior does not appear to be adaptive. 

Gerber et al. (2019) review interesting possibilities for why “win-stay:lose-switch” is 

consistently documented but has not been linked to fitness advantages. We hypothesize that 

some individuals more aggressively override philopatry based on prior nest success and these 

individuals represent a personality type that is only adaptive under certain circumstances. In 

other words, most females “always stay” but some “win-stay:lose-switch” so that not all the 

population’s eggs are in the same basket after a major landscape change. 

Stressors to sage-grouse populations are as diverse as the sage-brush ecosystems on 

which they depend. In the Great Plains and Wyoming Basin provinces, previous and future 

potential energy development represents a substantial cause of current and imminent habitat 

degradation, disturbance, and loss (Doherty et al. 2011, Allred et al. 2015). In the northwestern 

Great Plains and Columbia Basin substantial areas of sagebrush ecosystems have been lost or 

degraded due to agricultural tilling (Schroeder and Vander Haegen 2011). Cheatgrass (Bromus 

tectorum) and medusahead (Taeniatherum caput-medusae) invasion causes sagebrush ecosystem 
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degradation particularly in the warmer, lower elevation parts of the Intermountain West where 

these winter annual grasses have phenologies that exploit winter precipitation and avoid the 

warm dry summers that limit competition by the native grasses and forbs (Davies et al. 2011, 

Miller et al. 2011). Encroachment into sagebrush ecosystems by conifers in more mesic and 

often higher elevation areas of western North America has been substantial after presettlement 

and has resulted in a loss of herbaceous understory and sagebrush canopy cover (Miller and Rose 

1999, Coultrap et al. 2008, Miller et al. 2008, Davies et al. 2011). Each sage-grouse population 

across the current distribution must cope with novel combinations of stressors making it crucial 

to identify and understand local threats to which management actions may be tailored. We have 

demonstrated that site fidelity may be integral to sage-grouse response to stressors so 

incorporating fidelity behavior into wildlife-habitat response research is crucial. Additionally, 

some individuals may be able to capitalize on their site familiarity to achieve high reproductive 

success in areas that do not appear to be of high quality based on conventional standards. 

An implication of moderate- and coarse-scale fidelity being positively associated with 

fitness when landscape processes and conditions are suitable is that it can integrate multiple 

fitness components and may be a valuable proxy to habitat quality (Blums et al. 2002, Schroeder 

and Robb 2003). Habitat performance is often evaluated via resource selection analyses (Manly 

et al. 2002, Lele 2009, Fieberg et al. 2021) which assume that resources visited 

disproportionately to available resources are indicative of habitat quality. However, the assumed 

link between disproportionate use of resources and fitness benefits is tenuous and contrary to the 

concept of ecological traps (Robertson and Hutto 2006, Aldridge and Boyce 2007, Hale and 

Swearer 2016). Furthermore, fidelity may be a more reliable indicator of habitat suitability than 
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associations between landscape conditions and fitness components. For instance, demonstrating a 

statistical association between shrub cover and nest success is only useful if the biological 

significance can be interpreted and results from replicated studies are consistent (Smith et al. 

2020). Associations among landscape conditions and daily nest survival could be 

unrepresentative of stable and robust populations if disturbances or population decline alter 

habitat responses that promote population persistence (Taylor et al. 2012, Dahlgren et al. 2016a). 

Given that most local sagebrush ecosystems and respective sage-grouse populations are unique 

and under duress it is often difficult to demonstrate universal importance of research results 

(Schroeder et al. 1999, Connelly et al. 2004, Hagen et al. 2007, Connelly et al. 2011a, Miller et 

al. 2011, Smith et al. 2020). In contrast, differential nesting area fidelity may be judged relative 

to established baselines if strong fidelity is fundamental to sage-grouse ecology, as it appears to 

be. Breakdown or perturbation of established fidelity patterns may indicate a toxic relationship 

with the environment. Regionally weak associations between fidelity and vital rates may indicate 

poor habitat suitability and regions with strong associations between fidelity and vital rates may 

indicate high habitat suitability. Failure to account for area fidelity in conservation and 

management related research is troubling because fidelity may confer fitness advantages or 

disadvantages independent of habitat selection (Piper 2011, Patrick and Weimerskirch 2017, 

Catlin et al. 2019, Nordberg et al. 2021). The link between fidelity and fitness has not been well 

researched for sage-grouse but a study of a threatened population of Gunnison sage-grouse 

(Centrocercus minimus) found no association between breeding or brooding area fidelity and 

fitness components, despite high area and patch-level fidelity (Gerber et al. 2019). Similar results 
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have been found for other declining bird populations (Pyle et al. 2001). Our results may indicate 

relatively high habitat suitability in our study area because fidelity was predictive of fitness. 

Landscape Conditions We included 8 vegetation and 2 terrain variables in our model sets 

and none of these landscape conditions had notable support based on our model selection 

criteria. Vegetation conditions are often touted as critical to sage-grouse nest success (Beck and 

Mitchell 2000, Stiver et al. 2006, Hagen et al. 2007, Connelly et al. 2011b, Doherty et al. 2014, 

Stiver et al. 2015, Smith et al. 2018) but were not the dominant influence in this case. 

Discrepancies in the literature regarding the importance of vegetation conditions for nesting 

(Herman-Brunson et al. 2009, Smith et al. 2020) may be partly owing to rote focus on assumed 

proactive preference decisions by sage-grouse without accounting for other fundamental drivers 

of space use such as affinity for areas where individuals have familiarity that benefits their 

fitness. 

GLM and GAM Approaches 

Our use of two modeling approaches to evaluate consistency of results given differential 

model-type strengths and weaknesses was only partially warranted. Use-intensity, enclosed 

points, and eccentricity had similar support between the 2 modeling approaches although support 

for enclosed points and eccentricity was greater using the GAM approach. Our approach 

provides another example of generalized additive model (GAM) advantages such as robust 

automatic smoothing term selection and alternative random effects extensions (Van Der Burg et 

al. 2010, Wood 2017, Muff et al. 2020). The GAM function gam() of the R package mgcv 

appropriately selected linear terms where appropriate (use-intensity, enclosed points) and 

facilitated fitting of random intercepts for individuals which we could not easily accomplish 
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using function glmer() of R-package lme4. Fitting 2-dimensional smooths (interactions [use-

intensity × enclosed points]) was also facilitated with package mgcv. If we had used only the 

generalized linear models (GLM) we would have arrived at largely the same conclusions except 

that no support for enclosed points or eccentricity would have been indicated. It would have been 

difficult to adequately evaluate non-linear transformations for all the terms in the various GLM 

models so we would be less convinced that we adequately transformed the covariates. Despite 

flexibility of GLMs in modeling non-linear relationships with transformations or polynomials of 

independent variables the flexibility can be inadequate to capture even moderately complex 

relationships (Van Der Burg et al. 2010, Wood 2017). 

Conclusions  

We modeled the influence of 3 movement, 8 vegetation, 2 terrain, and 2 seasonality related 

variables using 2 modeling approaches to evaluate predictor-variable associations with daily nest 

survival and found that movement related variables were well supported. Use-intensity was the 

variable with the most support in the data even after controlling for female age and nest age and 

its contribution was robust to model type. We assert that use-intensity and eccentricity of short-

term nesting home ranges both represent different facets and scales of area fidelity and therefore 

familiarity. Movement properties derived from detailed relocation histories offer a flexible 

means of studying sage-grouse space and time-use and therefore fidelity patterns. Further 

research is needed to refine our understanding of which movement properties best describe 

fidelity patterns and their consequences. Research is also needed to understand how fidelity 

benefits or harms sage-grouse population performance in different landscape-disturbance 

contexts. Our findings support the fundamental importance of nesting area affinity, fidelity, and 
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familiarity to sage-grouse ecology which has been overlooked in most nesting ecology research 

for sage-grouse or other birds.



 
 

215 

Figures and Tables 

Table 7. Predictor variables included in generalized linear model and generalized additive model daily nest survival merged-model 
sets after variance inflation factor screening and Pearson’s correlation screening of 103 initial predictor variables. 

Raw Predictor Computed Summary Statistic Transformation 
barren hull-mean of 30-m patch zonal means 1 
daily precipitation (PRISM) mean of values at nearest neighbor points 1 
female age age category of female 1 
hull eccentricity index to the elongation of a hull 3 
hull enclosed points number of current and prior points in a hull  1 
hull use-intensity hull enclosed points / hull area log 
length of day mean of values at nearest neighbor points 1 
medium shrub hull-mean of 100-m patch zonal means 1 
nest age age of nest in days since incubation began 1 
nest number sequence of nesting attempts for the year (1 - 3) 1 
normalized height hull-mean of 30-m patch zonal means 1 
normalized height CV hull-CV of 30-m patch zonal means 1 
proximity to flow channels (km) hull zonal mean 1 
radius of variance (RoV) of veg biomass hull-mean of 100-m patch zonal means 1 
radius of variance (RoV) of veg height hull-mean of 100-m patch zonal means 1 
sage  hull-rCD of 30-m patch zonal means 1 
vegetation biomass hull-mean of 30-m patch zonal means 1 
vegetation biomass hull-rCD of 100-m patch zonal means 1 
vegetation height hull-mean of 30-m patch zonal means 1 
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Table 8. A) Model support table based on 68 generalized linear model (GLM) candidate sage-grouse nest survival models, B) sum of 
weights for each predictor variable based on GLM 95% confidence set, C) model support table based on 79 candidate generalized 
additive model (GAM) sage-grouse nest survival models and, D) sum of weights for each predictor variable based on GAM 95% 
confidence set. Number of models containing each variable is listed under n in sub-table B and D.  

A. Nest Survival Models (GLM) 
95% confidence set df logLik AICc Δi wi 

intercept + hull use-intensity 2 -430.1 864.21 0 0.47 
intercept + hull use-intensity + hull 
enclosed points 3 -429.55 865.1 0.9 0.3 

intercept + hull use-intensity + hull 
eccentricity 3 -429.78 865.57 1.36 0.24 

B. Model Terms (GLM) Model Term Descriptions w+(j) n 
hull use-intensity additive effect of hull enclosed points / hull area 1 3 
hull enclosed points additive effect of total points accrued in a hull footprint 0.3 1 
hull eccentricity additive effect of index to directional movement 0.24 1 

C. Nest Survival Models (GAM)  
95% confidence set df logLik AICc Δi wi 

intercept + s(use-intensity)  2 -430.1 864.21 0 0.39 
intercept + s(use-intensity) + s(hull 
enclosed points) 3 -429.55 865.1 0.9 0.25 

intercept + s(use-intensity) + s(hull 
enclosed points) + s(eccentricity) 4.76 -428.11 865.76 1.55 0.18 

intercept + s(use-intensity) + 
s(eccentricity) 6.22 -426.64 865.76 1.56 0.18 

D. Model Terms (GAM) Model Term Descriptions w+(j) n 
s(hull use-intensity) smooth of hull enclosed points / hull area 1 4 
s(hull enclosed points) smooth of total points accrued in a hull footprint 0.43 2 
s(eccentricity) smooth of index to directional movement 0.36 2 
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Figure 23. Partial effects plots for variables included in final logistic-exposure generalized additive model of sage-grouse daily nest 
survival rates (DNSR). Final model was constructed after collinearity screening and multi-model inference methods that indicated 
predictor suitability and importance. Subplots A and F represent partial effects of nest age and incubation recess movement 
directionality. Subplots B, C, and D represent main effects and the interaction of use-intensity and number of enclosed points based on 
marginal basis main effects and a tensor product smooth. Plot E illustrates the overall interaction of use-intensity and enclosed points 
in 3 dimensions. 
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Figure 24. Conditional effects plot generated from a logistic-exposure generalized additive model indicating how daily nest survival 
rate changes as a function of log(use-intensity) for quartiles of home range enclosed points, holding nest age at 15 days and all other 
variables at median values. The other terms in the model were hull eccentricity (directional movement tendency) and an interaction 
between log(use-intensity) and enclosed points. Shaded areas represent 95% confidence bands.
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CHAPTER SIX 

GENERAL CONCLUSIONS 

Detailed animal movement properties and related behavior modes have been difficult to 

integrate into applied research because technology and tools have only recently been available to 

collect and analyze sub-daily movement data. We fitted female sage-grouse with GPS 

transmitters that collected relocations approximately every 6 hours over the lifetime of 

individuals. We processed relocations to generate a suite of contemporary space- and time-use 

movement properties. We asked questions of our data related to identifying behavior modes, 

reconciling multiple movement properties with sage-grouse ecology, creating behavior-specific 

habitat maps, and evaluating the influence of movement properties on daily nest survival. 

We found that applying multivariate statistical approaches to our movement data was a 

viable solution for rigorous and objective behavior classification. Our statistically inferred 

behavior modes had a compelling biological interpretation because they were based on multiple 

movement properties, correspondence with known behavior modes, and correspondence with 

environmental variables. We successfully identified an exploratory movement mode that we 

integrated into other sections of our research. 

Our multivariate examination of movement properties versus potential predictors for 

females provided further evidence supporting theorized interrelationships among facets of space- 

and time-use of the landscape by animals (Van Moorter et al. 2016). We also found that much 

variation in movement properties explained by our predictor-variable sets was shared variation 

indicating that substantial multicollinearity exists among behavior modes, temporal modulators, 

terrain, and vegetation. Without using variance partitioning and partial RDAs we could easily 
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give an explanatory variable or class of variables more causal credit than deserved which may 

help explain the prevalence of equivocal results in sage-grouse habitat-response research. 

Multiple terrain and vegetation variables were somewhat associated with female sage-grouse 

movement properties, but no single landscape-condition variable or class of variables appeared 

to drive variation in movement properties. Daylength explained the most variation of any single 

covariate which is consistent with high seasonal process variance of sage-grouse movement 

patterns. 

We created behavior-specific habitat maps for our study area by modeling use-intensity 

as a lifetime timeseries which encouraged nuanced and biologically realistic interpretation of the 

causes and consequence of space- and time-use by females. Our individual-level and behavior-

specific modeling approach helped resolve some problems with classic habitat mapping 

approaches such as relying on user specified habitat-availability delineations and seasonal 

periods. Our reliance on a use-intensity timeseries also helped alleviate spatial- and temporal-

scale dependence by integrating scale via observed female movements. We found that landscape 

use varied substantially among behavior modes both with respect to range size and landscape 

conditions experience by females. 

Our daily nest survival research identified use-intensity as the variable with greatest 

support in the data. We interpreted use-intensity at nest sites as being a strong proxy to site 

fidelity which highlights the fact that movement properties derived from detailed relocation 

histories offer a flexible means of studying sage-grouse space and time-use and therefore fidelity 

patterns. Increased site fidelity and therefore familiarity with a site appeared to have a positive 

influence on daily nest survival. Further research is needed to refine our understanding of which 
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movement properties best describe fidelity patterns and their consequences. Research is also 

needed to understand how fidelity benefits or harms sage-grouse population performance in 

different landscape-disturbance contexts. Our findings support the fundamental importance of 

nesting area affinity, fidelity, and familiarity to sage-grouse ecology which has been largely 

overlooked in nesting ecology research for sage-grouse or other birds. 
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APPENDIX A 

 
SCALING OF T-LOCOH HULLS 
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T-LoCoH uses a scaling parameter s to control the degree to which local hulls are local in 

time versus space. We plotted the distribution of s for various time scales (Δt), and the 

proportion of time selected hulls for various values of s, to identify a value for s that achieved 

approximate parity of time and space influence on hull construction (Lyons et al. 2013, Lyons et 

al. 2019). A value of s = 0.005 was near the median parity for most sage-grouse where time 

scaling and displacement in two-dimensional space have balanced influence on hull construction, 

given a sub-monthly time scale. We set the scaling parameter s the same for all sage-grouse. 

Custom analysis and choices of s for each individual might optimize the hull construction for 

each female but would exorbitantly complicate processing and eliminate standardization, which 

complicates interpretation. Nearest neighbor sets of points were identified using the a-method 

which uses a cumulative time-scaled-distance (TSD) and a threshold parameter that dictates the 

cutoff for inclusion of points in a nearest-neighbor set. A value of a = 26000 TSD units was 

chosen after examining simulation generated plots of a vs. isopleth area for a sequence of a 

values (Lyons et al. 2013, Lyons et al. 2019). 
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APPENDIX B 

 
MIGRATION CLASSIFICATION 
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Background 

Migration has evaded a single objective definition by researchers and is known to operate 

along a continuum which indicates that it may arise from an amalgamation of factors (Dingle and 

Drake 2007). Sage-grouse migration has manifested differently among populations but has 

typically been reported as to-and-fro movements between breeding and winter ranges or breeding 

to summer and then winter range (Eng and Schladweiler 1972, Connelly et al. 1988, Fedy et al. 

2012, Dinkins et al. 2017, Newton et al. 2017, Pratt et al. 2017). Generally, sage-grouse maintain 

fidelity to individual seasonal use areas but interseasonal movements of sage-grouse are variable 

within and among populations; individuals are influenced by behavioral traditions (use area 

fidelity) as well as environmental conditions (Tack et al. 2012, Fedy et al. 2014, Newton et al. 

2017, Pratt et al. 2017). As a result, sage-grouse populations are known to exhibit multiple 

patterns of migration including null, obligate, facultative, partial, and irruptive migration (Tack 

et al. 2012, Fedy et al. 2014, Newton et al. 2017, Pratt et al. 2017). In some cases, sage-grouse 

migration is altitudinal or latitudinal and topography and sagebrush cover often differs between 

seasonal ranges (Dinkins et al. 2017, Newton et al. 2017, Pratt et al. 2017). 

Promoted by an early publication on sage-grouse migration events, researchers have been 

subjectively classifying migration for individuals based on minimum distances between ranges 

(10 km) using roughly estimated seasonal range boundaries (Connelly et al. 1988, Fedy et al. 

2012, Dinkins et al. 2017). The recent availability of GPS transmitters for sage-grouse has 

provided the data necessary for more accurate seasonal range estimates and more detailed 

definitions of migration have been attempted (Pratt et al. 2017). Although a standard method of 

classifying migratory status has not been adopted, progressively sophisticated methods are being 
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developed which recognize migration as one behavior type among multiple broad-scale 

movement behaviors that ultimately shape population distributions (Mueller and Fagan 2008, 

Bunnefeld et al. 2011, Abrahms et al. 2017). The primary variables used by ecologists to 

describe migratory behavior are 1) the proportion of migratory individuals, 2) the distance 

traveled between stable ranges, 3) the timing of migratory movements, 4) the duration of range 

use, 5) and the fidelity of individuals to stable ranges (Bunnefeld et al. 2011, Cagnacci et al. 

2016). Variables such as distance between stable seasonal ranges, fidelity to ranges, and duration 

on distinct ranges can be used to distinguish migration from resident (e.g., home range, 

sedentary), mixed migration, dispersal, and nomadic movement behaviors. Resident behavior is 

evident when an individual maintains a single ranging area (home-range) that occupies a small 

area relative to the population distribution (Roshier and Reid 2003, Mueller and Fagan 2008). 

Mixed migration occurs when spatially disparate ranges are used on a seasonal basis but fidelity 

is not maintained to the breeding range, non-breeding range, or both. Nomadism is distinguished 

by a lack of fixed breeding grounds, breeding and non-breeding range overlap, irregular timing 

of movements, irregular directionality to movements, and movements that are extensive and 

persistent (Roshier and Reid 2003, Mueller and Fagan 2008). Dispersal has been variously 

defined as movement by an individual from its birthplace to a site of potential reproduction, 

movement leading to spatial gene flow, or a three-stage process including departure from a natal 

area, movement through a matrix environment, and settlement in a novel area (Clobert 2012). 

Dispersal does not require successful reproduction and is therefore characterized by spatial 

displacement and social context (Roshier and Reid 2003). Though the classification of migration 

and disentanglement from other behaviors remains a challenge, recent research has found 
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evidence of some ecological causes and consequences of sage-grouse migration including 

increased survival for non-migratory females and the initiation of migration due to 

environmental cues (Dinkins et al. 2017, Pratt et al. 2017). Methodologies for classifying 

migration with more objectivity and corroboration by other studies will be needed to establish 

generalities about migratory behavior in sage-grouse. In the meantime, model-driven 

classification and quantification of migratory behavior will be helpful for understanding the 

characteristics of migratory behavior for local populations. 

Methods 

We constructed movement trajectories from the relocation histories of each female using 

the R package adehabitatLT (R Version 4.0.0, www.r-project.org; Calenge et al. (2009)). 

Descriptive parameters included the distance and turning angles between successive locations as 

well as the net squared displacement (i.e., NSD, displacement from start) of each location. We 

analyzed the trajectories of each female to classify migratory behavior and quantify the timing 

and extent of migration. We used a statistical framework that models the NSD timeseries of a 

movement path as a function of non-linear model parameterizations that represent different 

movement types. The models that we considered were migration, mixed-migration, dispersal, 

resident, and nomadic. For migratory female sage-grouse, we expected a stable NSD near zero 

while nesting, increase rapidly for a brief period sometime during fall or early winter, and then 

stabilize at an elevated level on a winter range until breeding season when NSD would drop back 

to stable levels near zero. In the case of mixed migration, NSD should increase from near zero 

and stabilize at higher winter levels with a subsequent drop to a lower level that is distinctly 

greater than zero. A dispersing animal has an NSD profile that dramatically increases from initial 
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low levels and permanently stabilizes at elevated levels. A resident individual exhibits 

consistently stable NSD values. A nomadic individual would likely have steadily increasing 

NSD values. Non-linear models for migrants and mixed migrants are double sigmoid functions 

whereas dispersal can be modeled with a logistic model (Bunnefeld et al. 2011, Spitz 2019). An 

asymptotic regression model has been shown to perform well for representing resident behavior 

and a linear model captures the expected pattern for nomadic behavior (Börger and Fryxell 2012, 

Spitz et al. 2017). 

The migratory and mixed-migratory NSD models fit the data best when stable ranging 

behavior is evident before and after seasonal home range shifts (Spitz et al. 2017). Therefore, we 

subset the relocation data from the 86 females into animal-year movement paths that represent 

yearly relocation histories for females that were alive with functional PTTs for > 300 days during 

2018-06-01 to 2019-07-01 or during 2019-06-01 to 2020-07-01. We further subset the relocation 

data from each trajectory to one position per day to establish a 24-hour sampling interval using 

the amt package version 0.0.7 in R. A 24-hour sampling interval represents a sufficient temporal 

scale for analyzing migration behavior and can eliminate fine-scale noise in the NSD signature 

while also improving computational efficiency (Bunnefeld et al. 2011, Spitz et al. 2017). We 

calculated the NSD for each animal-year trajectory using the adehabitatLT package version 

0.3.25 in R and then fit NSD models to each animal-year NSD timeseries using the migrateR 

package version 1.0.9 (Börger and Fryxell 2012, Spitz et al. 2017).  

We were not able to successfully fit all movement models with default starting values and 

parameter constraints for the movement timing parameters. Therefore, we plotted fitted model 

predictions on top of time-series scatterplots of NSD values to determine possible causes for 
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poor or failed model fits (Spitz et al. 2017). We then used the refine() function in migrateR to 

specify parameter starting values or constraints that might improve or promote model fit (Spitz et 

al. 2017). For instance, if the parameter estimates for a migration or mixed migration model 

appeared to be fitted to an earlier and less substantial increase in NSD values then we would 

specify the initial value of the midpoint of starting movement, theta, as a later date. Iterative 

visual checks of plotted models and manual specification of model parameters allowed all 5 

movement models to be fitted to each of 59 animal-year NSD data sets. We used the topmvmt() 

function in migrateR to calculate Akaike’s Information Criterion (AIC), which we used to 

evaluate support for each of the five NSD-based models fit to each animal-year NSD dataset 

(Appendix B, Tables 9 & 10) (Anderson and Burnham 2002, Spitz 2019). AIC can favor more 

complicated models (e.g., migratory) over resident-behavior models so topmvmt() applies 

Arnolds Rule to further penalize model complexity (Arnold 2010, Spitz et al. 2017). 

We imposed prespecified movement parameter constraints to eliminate consideration of 

models that have biologically unreasonable parameter estimates (Burnham and Anderson 2002, 

Spitz et al. 2017). To highlight discrepancies in movement patterns among animal-years, we 

imposed a constraint on the migration and mixed migration models which required winter-range 

occupancy to be greater or equal to 30 days (Spitz et al. 2017). The 30-day constraint highlighted 

the erroneous classification of animal-year NSD patterns as being migratory due to short 

duration displacement bouts that are associated with breeding or exploratory movement behavior 

and not migratory movements. If a classification change from migrant or mixed migrant was 

observed, then we determined the classification by visualizing the NSD time series plots with 

movement-model fitted lines in concert with the spatio-temporal context of sage-grouse locations 
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which were visualized in QGIS. Sage-grouse classified as dispersers exhibited some exploratory 

movements which caused the linear model (disperser) to fit better than the constant model 

(resident) but no sage-grouse exhibited actual dispersal behavior. In all such cases we manually 

reassigned dispersers to the resident category. We calculated the mean and standard deviation of 

the movement parameters for the most well supported migrant and mixed migrant models for 

each animal-year to make population-level inference about the yearly extent, and timing of 

migration for female sage-grouse in our study area. 

Results 

In 2018 and 2019, 63% (n = 19) and 97% (n = 34) of female sage-grouse were classified 

as migratory, respectively (Appendix B, Table 10). For migratory females, the median (± SD) 

midpoint of the departing movement from summer-fall range to winter range was 20 October in 

2018 (± 46 days, n = 12) and 26 October (± 40 days, n = 33) in 2019. The median time to 

complete ½ to ¾ of the departing movement was 3.5 days (± 7 days) in 2018 and 1.7 days (± 8 

days) in 2019. The median distance traveled from summer-fall to winter range was 30.6 km (± 

28 km) in 2018 and 17.5 km (± 21 km) in 2019. The median duration spent on the winter range 

in 2018 and 2019 was 141 days (± 48 days) and 120 days (± 40 days), respectively. The median 

midpoint of the return movement from winter range to breeding range was 25 March in 2018 (± 

10 days) and 11 March (± 35 days) in 2019. The median time to complete ½ to ¾ of the return 

movement was 1 day (± 8 days) in 2018 and 1 day (± 5 days) in 2019. 
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Table 9. Table of Δ AIC values for each of five NSD models fit to each animal-year dataset of 
greater sage-grouse in south Valley County, Montana.  

  Δ AIC 
grouse-year disperser migrant mix-migrant nomad resident 
004 2018 953.21 0 71.57 996.13 997.91 
006 2018 752.64 0 33.14 775.12 769.08 
006 2019 325.75 0 3.91 412.37 373.43 
007 2018 370.42 12.53 0 574.39 389.43 
012 2018 559.71 0 12.44 585.2 582.21 
014 2018 513.21 0 34.37 538.91 519.87 
014 2019 113.84 0 2.03 176 152.81 
015 2018 791.29 0 40.06 829.37 820.35 
015 2019 966.09 0 20.87 1105.53 1041.43 
016 2018 781.7 0 13.79 1024.71 1023.68 
017 2018 626.22 0 7.17 800.37 724.01 
017 2019 913.64 0 7.74 1103.11 989.52 
018 2018 881.58 0 30.23 1075.99 979.11 
018 2019 903.33 0 16.57 1050.31 1003.97 
020 2018 1114.55 0 27.92 1281.17 1210.24 
021 2018 0 1.4 3.65 247.16 37.25 
025 2018 618.18 0 8.76 677.94 662.13 
025 2019 1223.54 0 42.06 1340.91 1289.94 
029 2018 566.38 0 3.82 827.97 587.64 
031 2018 219.6 15.51 0 255.9 259.67 
032 2018 1685.63 0 113.38 1833.56 1771.77 
035 2018 678.53 0 0.9 987.03 711.38 
035 2019 1090.86 0 21.24 1416.89 1112.95 
037 2018 467.83 0 2.32 578.62 476.99 
037 2019 262.51 92.12 0 575.31 598.54 
039 2018 556.79 0 26.08 589.36 588.64 
039 2019 14.25 5.49 0 31.68 27.47 
040 2019 890.63 4.42 0 1034.06 977.61 
041 2019 309.52 3.62 0 473.34 375.36 
042 2019 973.27 0 12.78 1115.6 1058.11 
045 2019 932.41 0 3.46 1056.25 972.51 
046 2018 416.58 0 8.19 706.74 710.65 
049 2018 1722.45 0 134.86 1897.88 1807.54 
049 2019 1905.92 0 181.29 2002.83 1939.52 
055 2018 734.95 0 15.65 857.23 821.86 
055 2019 511.56 0 8.97 790.09 810.89 
056 2018 1392.54 27.92 0 1573.01 1496.32 
056 2019 911.07 87.37 0 1340.84 1375.51 
057 2019 1126.91 0 198.35 1142.1 1133.06 
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060 2019 1082.15 0 27.26 1193.41 1143.21 
061 2019 1394.38 0 67.78 1504.54 1466.44 
062 2019 735.19 0 3 976.93 766.34 
063 2019 903.78 0 23.68 1015.85 963.95 
064 2019 237.08 6.1 0 338.2 273.75 
065 2019 1386.44 0 30.27 1541.28 1470.56 
066 2019 645.65 0 12.83 743.91 691.39 
068 2019 3.83 7.28 2.39 9.96 0 
069 2019 795.35 0 12.65 942.63 866.05 
070 2019 715.47 3.88 0 887.31 881.6 
071 2019 548.03 3.08 0 636.64 588.02 
072 2019 308.57 0 2.94 429.02 423.2 
073 2019 1579.31 0 87.38 1707.55 1581.63 
076 2019 93.79 43.58 0 301.29 212.2 
077 2019 826.52 0 27.04 930.68 833.64 
078 2019 682.45 0 3.97 937.92 688.39 
081 2019 325.11 2.46 0 390.06 349.05 
084 2019 1249.17 0 39.79 1404.87 1352.21 
085 2019 503.67 0 41.12 516.36 504.43 
088 2019 78.6 3.15 0 136.79 131.81 

Table 10. Sequence of migration classification refinements for NSD model analysis evaluating 
migratory behavior for greater sage-grouse in south Valley County, Montana. Sage-grouse 068 
was not classified because gaps in the relocation history precluded a final determination. 

id year 
initial NSD 

classification 
30-day 

constraint 
mixed migration 

= migration  
final 

determination 
004 2018 migrant disperser disperser resident 
006 2018 migrant disperser disperser migrant 
006 2019 migrant migrant migrant migrant 
007 2018 mixmig mixmig migrant migrant 
012 2018 migrant disperser disperser migrant 
014 2018 migrant disperser disperser migrant 
014 2019 migrant migrant migrant migrant 
015 2018 migrant disperser disperser migrant 
015 2019 migrant migrant migrant migrant 
016 2018 migrant migrant migrant migrant 
017 2018 migrant migrant migrant migrant 
017 2019 migrant migrant migrant migrant 
018 2018 migrant migrant migrant migrant 
018 2019 migrant migrant migrant migrant 
020 2018 migrant migrant migrant migrant 
021 2018 disperser disperser disperser migrant 
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025 2018 migrant disperser disperser migrant 
025 2019 migrant migrant migrant migrant 
029 2018 migrant migrant migrant migrant 
031 2018 mixmig disperser disperser migrant 
032 2018 migrant migrant migrant migrant 
035 2018 migrant migrant migrant migrant 
035 2019 migrant migrant migrant migrant 
037 2018 migrant migrant migrant migrant 
037 2019 mixmig mixmig migrant migrant 
039 2018 migrant disperser disperser resident 
039 2019 mixmig migrant migrant migrant 
040 2019 mixmig mixmig migrant migrant 
041 2019 mixmig mixmig migrant migrant 
042 2019 migrant migrant migrant migrant 
045 2019 migrant migrant migrant migrant 
046 2018 migrant disperser disperser resident 
049 2018 migrant migrant migrant migrant 
049 2019 migrant migrant migrant migrant 
055 2018 migrant migrant migrant migrant 
055 2019 migrant migrant migrant migrant 
056 2018 mixmig mixmig migrant migrant 
056 2019 mixmig mixmig migrant migrant 
057 2019 migrant disperser disperser resident 
060 2019 migrant migrant migrant migrant 
061 2019 migrant migrant migrant migrant 
062 2019 migrant migrant migrant migrant 
063 2019 migrant migrant migrant migrant 
064 2019 mixmig mixmig migrant migrant 
065 2019 migrant migrant migrant migrant 
066 2019 migrant migrant migrant migrant 
068 2019 resident resident resident rejected 
069 2019 migrant migrant migrant migrant 
070 2019 mixmig mixmig migrant migrant 
071 2019 mixmig mixmig migrant migrant 
072 2019 migrant migrant migrant migrant 
073 2019 migrant migrant migrant migrant 
076 2019 mixmig mixmig migrant migrant 
077 2019 migrant migrant migrant migrant 
078 2019 migrant migrant migrant migrant 
081 2019 mixmig disperser disperser migrant 
084 2019 migrant migrant migrant migrant 
085 2019 migrant migrant migrant migrant 
088 2019 mixmig mixmig migrant migrant 
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APPENDIX C 

 
REMOTE SENSING LANDSCAPE CONDITIONS 
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Existing Geospatial Products  

We downloaded annual 30-m resolution ground cover metrics from the Rangeland 

Analysis Platform (RAP; (Jones et al. 2018)) and Multi-Resolution Land Characteristics 

(MRLC) 30-m resolution vegetation layers (Homer et al. 2012, Xian et al. 2015). We evaluated 

ground cover data from both sources because the different modeling methods may result in 

differing, yet unknown, accuracies and correspondence with ground cover in our study area. We 

checked for correspondence between univariate movement-cover response curves for matched 

RAP and MRLC cover types (e.g., shrubs, perennial herbaceous/forbs). The RAP and MRLC 

layers did not correspond well with each other, especially for shrubs. The RAP and MRLC layers 

also exhibited poor correspondence to our cover expectations inferred from NAIP imagery and 

familiarity with the study area. 

Distance to Channels 

We used a digital elevation model (DEM) to synthesize a distance to stream channel 

variable which represents potential water sources in our study area. First, we used the Sink 

Drainage Route Detection tool with default settings (no threshold) to generate a sink route input 

layer which leads flow through closed depressions. Second, we calculated the Strahler stream 

order for use as the stream initiation grid. Third, we generated a stream channel network layer 

using the Channel Network algorithm with the DEM, sink route grid, and Strahler stream order 

grid as inputs. We specified channels to be initiated at Strahler order > 4; minimum segment 

length was left at the default 10 cells. Finally, using QGIS, we subset the resulting channel 

network to channel segments with Strahler order > 5, rasterized the resulting channel layer with 

the vector to raster tool, and calculated the distance to channel cells using the raster distance tool. 
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Channels with Strahler order > 5 were chosen by overlaying a Strahler-order-labeled channel 

network on terrain and aerial imagery data and choosing a threshold that generally corresponded 

to actual eroded gullies or channels where flow would accumulate during typical rain events. 

Distance to Water Bodies  

Water can have a distinct image texture, so we used a texture analysis to extract water 

body zones from National Agriculture Imagery Program (NAIP) imagery captured during June 

and July of 2017.  Our texture analysis was performed with the multi-band variation (MBV) 

algorithm of the System for Automated Geoscientific Analysis (SAGA) GIS with the default 1-

pixel neighborhood radius (SAGA version 2.3.2, www.saga-gis.org, Conrad et al. (2015)). Using 

values from all the NAIP raster cells in a neighborhood (moving window) the algorithm 

calculates distances from the feature space (spectral values) centroid to each individual cell. 

Feature space distance is the basis for three spectral variation metrics that are calculated and 

mapped to the center cell in each neighborhood to create three new images. The three outputs are 

the mean distance of all cells, the standard deviation of distances for all cells, and the distance of 

the center cell from the centroid. The standard deviation of distances (MBV SD) best seemed to 

highlight water bodies. We derived water body information by transforming the MBV SD texture 

image with a fuzzy raster linear membership function. Using the NAIP imagery we also 

calculated a normalized difference water index (NDWI) using SAGA GIS and transformed it 

with a fuzzy raster linear membership function. The fuzzy raster linear membership function 

transformed the values of the MBV SD and NDWI into a continuous gradient from 0 to 1 

representing our determination of the proportion water body membership represented by original 

values of the layers. We determined the specific parameters for “fuzzifying” the MBV SD and 

http://www.saga-gis.org/


238 
 
NDWI layers by examining them in QGIS to decide on an acceptable balance between certain 

membership and fuzzy (partial) membership. We additionally rasterized vector feature water 

bodies from the High Resolution National Hydrography Dataset Plus (NHDPlus HR) by burning 

the value of 0.45 into pixels where a water body was present and 0 otherwise. We used the raster 

algebra algorithm in QGIS to add together the fuzzy MBV SD layer, fuzzy NDWI and NHDPlus 

water body raster. The sum-layer pixels were binary reclassified to 1 if greater than 1.15 and 0 

otherwise. Finally, we masked any areas where a topographic slope layer generated from a 

digital elevation model (DEM) was ≤ 10.15 because pillowy coarse clay ridgetops in our study 

area had a smooth texture and gray spectral profile that indicated water in both the NDWI and 

MVB SD layers. The expression used in QGIS raster calculator to generate the raster layer of 

water bodies in the study area was ((MBV_SDfuz + NDWIfuz + NHDwater)>1.15) * slope <= 

10.15. The proximity algorithm in QGIS was used to generate our final product which represents 

the Euclidean distance from water bodies in our study area. To quantify landscape heterogeneity 

of water bodies we also calculated the radius of variance (RoV) of proximity to water bodies 

using the SAGA radius of variance algorithm (search radius = 120, SD = 0.15).  

NDVI-Based Non-Sage Shrub Layers  

Sage-grouse may be attracted to or repelled by structural-habitat types such as mesic 

creek margins, shrublands, juniper savannas, and forest. Landscape-element GIS products that 

have broad-extent coverage may not have a sufficient signal-to-noise ratio at moderate scales to 

realistically represent mesic creek margins, shrublands, juniper savannas, and forest habitat 

elements to which sage-grouse respond. To fill the gap in available data, we adopted an image-

texture analysis approach to derive indices for mesic meadows along creeks, medium-sized 
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shrubs, large shrubs, and forest zones. Our methodology for creating these structural habitat 

indices (vegetation indices) was also motivated by a need to distinguish upland vegetation types 

from lowland types. Sage-grouse in our study area tended toward use of upland sites for nesting 

and visited mesic or lowland sites to different degrees during other phenological stages.  

We extracted vegetation-based texture signals in a NDVI image derived from 2017 NAIP 

imagery using the structural feature set (SFS) application in Orfeo ToolBox as the key tool 

(Grizonnet et al. 2017). The 2017 NAIP image was captured in July of 2017 which was a year of 

particularly low rainfall in July. Drought conditions during image capture aided discrimination of 

persistent vegetation from more seasonally ephemeral vegetation which cannot be mapped with 

high reliability. The 2017 NAIP imagery also captured image texture better (i.e., was sharper) 

than the 2019 NAIP imagery. While we relied on the 2017 NAIP imagery for extracting image 

texture features we exploited information in the 2015, 2017, and 2019 NAIP imagery to calculate 

an average NDVI image from all three years. Averaging NDVI values across the 3 years was a 

further effort to map persistent vegetation and attenuate noise from ephemeral vegetation. We 

calculated average NDVI values using the fast non-local means algorithm in Orfeo ToolBox. 

Non-local means is a noise reduction procedure that preserves image texture better than most 

smoothing algorithms. The fast version of the algorithm takes computational shortcuts to 

facilitate processing of large images. Our general strategy for extracting information about 

landscape elements useful to sage-grouse was to weight NDVI values from the 2015-2017-2019 

NDVI image using textural information contained in the 2017 NDVI image and topographic 

context derived from a DEM. 
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 We preprocessed the raw data prior to calculating SFS texture features by rescaling the 

NDVI image to the range 0–255 and resampling the rescaled image from a 0.6-m resolution to a 

2-m resolution. We generated 2 base images during rescaling by using a nearest neighbor 

interpolation on one and a cubic polynomial interpolation on the other. The nearest neighbor 

resampled image captured texture ranging from medium shrubs (e.g. black greasewood 

[Sarcobatus vermiculatus], skunkbrush sumac [Rhus trilobata], western snowberry 

[Symphoricarpos occidentalis]) to trees (e.g. ponderosa pine [Pinus ponderosa]) while the cubic 

polynomial resampled image captured texture from larger junipers (e.g. creeping juniper 

[Juniperus horizontalis], Rocky Mountain juniper [Juniperus scopulorum]) to trees. Therefore, 

resampling allowed us to isolate the medium-sized shrub texture signal from the total-shrub 

texture signal. We processed each rescaled-resampled NDVI image with the Orfeo ToolBox SFS 

application (spectral threshold = 20, spatial threshold = 20, number of directions = 20) to 

generate 6 texture feature layers for each NDVI image. Of the 6 texture feature layers, we 

identified the SFS-length feature as discriminating the image textures (shrubs and trees) that we 

needed to isolate. We processed the two SFS-length texture images with the Orfeo ToolBox 

Haralick feature extraction tool (x radius = 10, y radius = 10, x offset = 1, y offset = 1) to 

generate 8 Haralick simple texture features for each image and selected the second Haralick 

feature (“entropy”) which adequately highlighted the zones where the SFS-length texture values 

were high. Our intermediate result was a heavy-shrub and tree (e.g. juniper, ponderosa) index 

and a total-woody index (e.g. greasewood, juniper, ponderosa).  

Isolating upland shrubland texture from lowland mesic creek zones required us to 

discount both the medium-shrub index and the heavy-shrub and tree index by geomorphon 
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(terrain form), valley bottom flatness, distance to higher order (higher flow) stream channels, 

water bodies and a riparian mask extracted from the LANDFIRE 2016 existing vegetation type 

layer. Geomorphon terrain forms were reclassified from 10 forms into 4 broader terrain classes 

composed of 1) flats and footslopes, 2) valleys and depressions, 3) hollows and 4) all other 

upland forms including slopes, ridges, and summits. We rescaled our multi resolution valley 

bottom flatness layer so that extremely flat areas had a value of 0 and ridges had a value near 1. 

Our distance to stream channel and water body layers were converted to a binary image such that 

distance values within 50 meters of a feature were given a value of 0 and all other features were 

given a value of 1. All continuous field and binary mask images were then multiplied with the 

total-woody index and a 0–255 rescaled 0.6-m resolution NDVI image to weight the magnitude 

of 2015-2017-2019 NDVI values by the masks and the total-woody index. The exact same 

procedure was executed on the heavy-shrub and tree index. The result was a weighted total-

woody index and a weighted heavy-shrub and tree index. 

A lowland-NDVI index was calculated by inverting the weighted total-woody index and 

multiplying it by the unweighted 0–255 rescaled 0.6-m resolution 2015-2017-2019 NDVI image. 

A medium-shrub index was calculated by inverting the heavy-shrub and tree index, multiplying 

it by the total-woody index and then weighting the resultant medium-shrub index using the same 

procedure as for the weighted total-woody index. To isolate heavy shrubs (e.g. juniper) we 

masked trees out of the weighted heavy-shrub and tree index using Rangeland Analysis Platform 

version 2 tree data. Due to implausible fluctuations in RAP tree layer values among years we 

averaged 4 tree cover images representing yearly estimates for 2016 – 2019. Image averaging 

was accomplished using the dimensionality reduction algorithm in Orfeo toolbox to dampen 
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prediction error-noise while maintaining the central tendency of predictions. A principal 

component analysis (PCA) was performed on the 4-band multiyear image (RAP tree 2016 – 

2019) and the first principal component was then inverse transformed back to the original scale 

of the data. The PCA-averaged image was then examined to identify a threshold value whereby 

values above the threshold were mostly woodlands and values below the threshold were not. We 

created a binary mask using the forest threshold to mask forested areas out of the weighted 

heavy-shrub and tree index. We then inverted the mask and multiplied it by the PCA-averaged 

tree cover estimates and the 2015-2017-2019 NDVI image to produce our woodland (forest) 

index. 

Mesic creek floodplains and valley bottoms are captured by our lowland-NDVI index. 

Upland greasewood patches and Rocky Mountain juniper groves of smaller stature are captured 

by the weighted medium-shrub index. Larger stature juniper-savannah zones are captured by the 

weighted heavy-shrub and tree index and ponderosa pine woodlands are captured by the forest 

index. Shrubs or subshrubs such as Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. 

wyomingensis), rabbitbrush (e.g., Ericameria nauseosa), longleaf wormwood (Artemisia 

longifolia), field sagewort (Artemisia campestris), and tarragon (Artemisia dracunculus) were 

generally too small and spectrally ambiguous to produce a substantial textural signal. Therefore, 

our shrub indices represent medium and large stature shrubs only. 

Sagebrush Cover Estimation  

Sagebrush cover is an unequivocally important habitat element for sage-grouse, so we 

developed a method of estimating sagebrush cover by combining an image classification of 

sagebrush with the NDVI-based textural information described above. We also attempted to 
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develop a sagebrush index to use either as a final product or as an ancillary layer in our 

classification. Ultimately, we developed or identified 5 NAIP-derived indices to use as image 

classification explanatory layers in place of the raw spectral bands (i.e., red, green, blue, NIR). 

Our strategy was to exploit the unique characteristics of sagebrush as recorded by biannual 1-m 

or 0.6-m 4-band NAIP imagery. The sagebrush characteristics that worked to our advantage were 

the among-band homogeneity of reflectance values, temporal consistency of sagebrush cover, 

distinct image texture at a 0.6-m resolution and low NDVI values relative to other plant cover. 

To capitalize on the gray color of sagebrush we calculated the per-pixel coefficient of variation 

(CV) of the red, green, and blue bands of NAIP imagery (RGB-CV). To capture temporal 

consistency of sagebrush cover and attenuate the signature of shadows we calculated the average 

of the RGB-CV index from the 2015, 2017, and 2019 imagery. Image averaging of the 3 RGB-

CV images was accomplished with the fast non-local means (patch radius = 3, search radius =3) 

algorithm in Orfeo toolbox.  

Our second index weighted the absolute magnitude of summed deviations from the mean 

for each cell of a 4-band NAIP image by the coefficient of variation in the per-pixel set of 4 

spectral bands. Therefore, the index registers an interaction between the intensity of the spectral 

reflectance values and the variability among spectral bands. High intensity (bright) colored 

pixels or pixels with high or low near-infrared reflectance, relative to the mean, receive high 

values while pixels on a gray scale, including black or white, receive low values, regardless of 

their intensity. Bright cells with slight coloring will have higher index values than dark pixels 

with slight coloring. Henceforth, we will refer to our second index as the vegetation color index 

(V-COLOR). The V-COLOR index was a variation of the RGB-CV index that highlighted water, 
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green vegetation and senesced vegetation while generally preserving the low CV values of 

sagebrush. Sagebrush with a substantial green or recently senesced (red) grass or herbaceous 

understory will have moderate V-COLOR index values. The distribution of the V-COLOR index 

was very compact and right skewed so we square root transformed the index. To capture 

temporal consistency of sagebrush cover and attenuate the signature of shadows we calculated 

the average of the V-COLOR index from 2015, 2017, and 2019 imagery. Image averaging of the 

3 V-COLOR images was accomplished with the fast non-local means algorithm (patch radius = 

3, search radius =3) in Orfeo toolbox. 

We developed two vegetation indices from 2015, 2017, and 2019 NAIP imagery. NDVI 

was calculated from each year of NAIP imagery and then the average was taken with the fast 

non-local means algorithm (patch radius = 3, search radius =3) in Orfeo toolbox. In addition to 

NDVI we also calculated leaf area index from reflectances with linear combination 

(LAIfromRefLinear [LAI]) using the Radiometric Indices application in Orfeo toolbox. Based on 

visual comparison to the NAIP images, the NDVI and LAI images each captured unique aspects 

of the non-vegetated land surface where discrimination of barren areas generally appeared better 

for the LAI. 

 The final index that we generated was a textural feature layer derived from the 2017 

NAIP imagery. We used the multi-band variation (MBV) application in SAGA GIS (weighting = 

none, radius = 3 cells) to generate a textural feature set (Palmer 2002, Conrad et al. 2015). The 

MBV application calculates pixel variability statistics using information in every input band 

(e.g., NAIP 4-band imagery) and returns 3 images based on feature space distances between 

focal pixels and neighborhood pixels. The MBV-distance image appeared to best highlight 
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sagebrush texture and we further processed it to enhance the textural signal using the PanTex 

application in Orfeo toolbox (window radius x = 4, window radius y = 4) (Pesaresi et al. 2008). 

PanTex is texture-derived built-up presence index originally created to identify built-up 

(developed) areas on the landscape. PanTex preserves the grainy texture created by stands of 

shrubs but attenuates the MBV distance signal that is due to natural and manmade edge effects 

(e.g. streambanks, road margins). 

The next phase of our sagebrush classification required delineating image classification 

training polygons for 17 land-cover classes that we could reliably discern from NAIP imagery.  

We reduced variability within the training classes by choosing land-cover classes that were 

readily evident in the NAIP imagery and that had a relatively stable occurrence and spectral 

signature across years. For instance, we did not delineate irrigated agricultural fields or lake 

margins which can incur substantial changes from year to year. To increase accuracy of 

delineations, we examined a 1-m NAIP image from 2015 and 0.6-m NAIP imagery from 2017 

and 2019. A weakness of both field-based and GIS-based training data delineations is that 

spectrally unique cover classes may be hard to identify and can be compromised by imprecise 

delineations, image anomalies, or image noise. To reduce noise introduced by imprecise 

delineations or our inability to visualize the multispectral uniqueness of training zones we 

segmented subsets of the training image using the large-scale mean shift segmentation algorithm 

in Orfeo ToolBox. Segmentation allowed us to select spatially adjacent and spectrally similar 

sets of pixels (super-pixels) overlying the footprint of targeted land-cover classes. We selected 

super-pixel training polygons for 1) shadowed terrain, 2) clear water bodies, 3) moderately turgid 

water, 4) highly turgid water, 5) barren coarse-clay zones, 6) bright barren zones, 7) moderately 
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bright barren zones, 8) barren-zone vegetation islands, 9) xeric non-irrigated pastures, 10) xeric 

sparse-sagebrush zones, 11) Wyoming big sagebrush, 12) silver sagebrush, 13) greasewood, 14) 

juniper, and 3 tiers of progressively higher green leafy biomass. Our three green-leafy tiers 

roughly corresponded to 15) mesic meadows near creek margins, 16) snowberry groves near 

creek margins or seeps, and 17) wet-mesic meadows, or broadleaf cattail (Typha latifolia) 

monocultures. 

We conducted image classification using the machine learning applications in Orfeo 

toolbox. We trained classifiers with the training polygons and the 5 NAIP-derived indices. We 

fitted classifiers using multiple classifier types and then chose the classifier with the best 

performance based on confusion matrices. The confusion matrices may give an overly optimistic 

accounting of classifier performance because they were calculated with subsets of the training 

data and not independent validation datasets. Nevertheless, the confusion matrices provided a 

useful criterion by which to choose among multiple classifiers. The classifiers that we fitted were 

the support vector machine classifier, boost classifier, decision tree (DT), normal bayes, random 

forest, and k nearest neighbors classifier. We chose the decision tree classifier because it had the 

highest global performance (κ = 0.95) and highest f-scores for the xeric sparse-sagebrush (f-score 

= 0.95) and Wyoming big sagebrush (f-score = 0.95) cover classes. 

We binary reclassified the DT classified image such that xeric sparse-sagebrush and 

Wyoming big sagebrush pixels had values of 1 and all other classes had a value of 0. We then 

threshold masked the binary reclassified sage-class image using our MBV-based textural feature 

layer and our total-woody index. Threshold masking removed pixels classified as sagebrush in 

areas without valid sagebrush textural values such as wooded areas or flat areas with minimal 
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vegetation structure. We mean resampled the sagebrush cover product to match the resolution of 

the 1/3rd arc second DEM and derivative products. Resampling resulted in continuous-field cover 

estimates of sagebrush based on the binary 0.6-m DT sagebrush image. 

Bare Ground Cover Estimation 

 We derived bare ground cover estimates by binary reclassifying the DT classified image 

(see above) such that classes 5, 6, and 7 were given a value of 1 and all other categories were 

given a value of 0. The bare ground cover product was mean resampled to match the resolution 

of the 1/3r arc second DEM and derivative products. Resampling resulted in continuous-field 

cover estimates of bare ground based on the binary 0.6-m DT bare ground image. 

LiDAR-Based Vegetation Estimation  

We downloaded DNRC LiDAR digital surface model (DSM) and digital elevation model 

(DEM) data from the Montana State Library site: http://msl.mt.gov/gis/lidarinventory. We used a 

vector ruggedness measure algorithm on the DSM to create an index for landscape ruggedness 

which is different from topographic ruggedness because all landscape structures (e.g., vegetation, 

buildings, fences) contribute to the index values. We used the same vector ruggedness algorithm 

on the DEM to create an index for landscape ruggedness. We then subtracted the two indices to 

create an index of non-terrain height of objects on the landscape. On the open range, our height 

index largely corresponds to an index of vegetation height and the landscape ruggedness index 

corresponds to fine-scale landscape features such as gullies, headcuts, or cliffs. To quantify 

landscape heterogeneity of vegetation height and ruggedness we calculated the radius of variance 

(RoV) of each variable using the SAGA radius of variance algorithm (search radius = 120, SD = 

1). 
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We also created a LiDAR-enhanced vegetation index by performing a principal 

component analysis on NAIP-imagery NDVI from 2015, 2017 and 2019 as well as the LiDAR 

DSM image. The first principal component effectively captured a gradient of variation due to 

NDVI values and height values which positively covaried. Our LiDAR enhanced NDVI product 

better represents vegetation biomass because verdant pastures or wetlands have lower values 

than verdant forest canopies. We refer to our LiDAR enhanced NDVI product as vegetation 

biomass. To quantify landscape heterogeneity of vegetation biomass we calculated the RoV of 

biomass using the SAGA radius of variance algorithm (search radius = 120, SD = 1). 
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APPENDIX D 

 
BEHAVIOR MODE CLUSTER QUALITY VALIDATION 
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Figure 25. Cluster quality statistics for k-means partitioning. 
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Figure 26. Cluster quality statistics for PAM partitioning.  
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Figure 27. Cluster quality statistics for Ward-hierarchical partitioning.  

 



 
 

253 

 
Figure 28. Internal validation statistics for k-means, partitioning around medoids (PAM), and Ward-hierarchical partitioning of 7 
movement metrics for sage-grouse. The term agnes in the legend refers to the Ward-hierarchical partitioning method; agnes is the R 
statistical computing function used.  
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Figure 29. Stability validation statistics for k-means, partitioning around medoids (PAM), and Ward-hierarchical partitioning of 7 
movement metrics for sage-grouse. The term agnes in the legend refers to the Ward-hierarchical partitioning method; agnes is the R 
statistical computing function used.  
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Figure 30. Multipaneled figure illustrating 14 k-means clusters relative to known behavior modes and movement metrics for sage-
grouse.  
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Figure 31. Multipaneled figure illustrating 8 PAM clusters relative to known behavior modes and movement metrics for sage-grouse.  
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Figure 32. Multipaneled figure illustrating 2 Ward-hierarchical clusters relative to known 
behavior modes and movement properties for sage-grouse. 
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Figure 33. Similarity matrices for presence-absence co-occurrence tests of correspondence 
between partition results and known behavior modes. From top to bottom, the matrices are for k-
means, PAM, and Ward-hierarchical partitioning. Statistically significant correspondence is 
indicted by red cells (low p-values). 



259 
 

 
Figure 34. Similarity matrix illustrating correspondence among known sage-grouse behavior 
modes, a k-means partitioning scheme (KM 14), a partitioning around medoids (PAM 8) 
partitioning scheme, a Ward-hierarchical partitioning scheme, and the results of multivariate-
regression-tree (mvpart) partitioning of the 8-mode PAM scheme based on 18 landscape 
condition variables relevant to sage-grouse. 
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APPENDIX E 

 
SUPPLEMENTARY MATERIAL FOR MOVEMENT PROPERTY CHAPTER 
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Table 11. Description of 15 redundancy-analysis response variables and additional 3 variables (h-UI, RTmu, RTmu-cov) used in PCA 
analysis. 
Movement Property Label Description  Ecological Relevance 
hull area h-A size of hull  short-term home range 
hull duration  h-D average time spent in a hull per visit average time-use intensity  
hull eccentricity h-E elongation of hull index to directional movement 
hull enclosed points  h-I number of points accrued in a hull footprint  index of global use-intensity  
hull enclosed points / hull 
area 

h-UI areal density of used points enclosed by a 
hull 

analogous to global use-intensity 

hull revisits  h-RV number of visits to a hull intermittent importance of area 
hull speed  h-S average speed of ‘steps’ among points in a 

hull  
average movement magnitude   

hull speed (SD) h-S-sd variability of step speeds among points in a 
hull  

variability in movement magnitudes 

100-m patch residence time 
(total) 

RT hull-wide mean of total residence time in 
used 100-m radius patches 

total fine-scale time-use intensity 

100-m patch residence time 
(mean per visit) 

RTmu hull-wide-mean of average residence time 
per visit to used 100-m radius patches 

average fine-scale time-use intensity 

CV of 100-m patch residence 
time (total) 

RT-cov hull-wide variability in residence time per 
visit to used 100-m radius patches 

variability in total fine-scale time-use 
intensity within hull 

CV of 100-m patch residence 
time (mean) 

RTmu-cov hull-wide variability in average residence 
time per visit to used 100-m radius patches 

variability in average fine-scale time-
use intensity within hull 

100-m patch revisits RV hull-wide mean of number of revisits to used 
100-m radius patches 

intermittent importance of patches 
within hull 

100-m patch time-to-return TtoR hull-wide mean of median time-to-return 
among visits to used 100-m radius patches 

intermittent importance of patches 
within hull 

CV of 100-m patch time-to-
return 

TtoR-cov hull-wide variability of median time-to-
return among visits to used 100-m radius 
patches 

variability in intermittent importance 
of patches within hull 

CV of 500-m patch residence 
time 

RT500-
cov 

hull-wide variability in residence time per 
visit to used 500-m radius patches 

variability in intermittent importance 
of patches within hull 



 
 

262 
CV of 500-m patch time-to-
return 

TtoR500-
cov 

hull-wide variability of median time-to-
return among visits to used 500-m radius 
patches 

variability in intermittent importance 
of patches within hull 

net displacement from first 
nest 

ND-nest distance from first nest related to seasonal movements 

Table 12. Description of all predictor variables used or seriously considered for redundancy-analysis based female sage-grouse 
movement ecology research. 

Geospatial Layer Description 
Data Source >> 
Processing 

Raw Grain 
Size Ecological Relevance 

mean(2016–2019) annual forbs and 
grasses 

RAP >> QGIS 30 m annual forbs and grasses percent cover 

mean(2016–2019) bare ground RAP >> QGIS 30 m bare ground percent cover 
mean(2016–2019) litter RAP >> QGIS 30 m litter percent cover 
mean(2016–2019) perennial forbs and 
grasses 

RAP >> QGIS 30 m perennial forbs and grasses percent cover 

mean(2016–2019) shrubs RAP >> QGIS 30 m shrubs percent cover 
mean(2016–2019) trees RAP >> QGIS 30 m trees percent cover  
MSU LANDFIRE sage LANDFIRE 30 m percent sagebrush cover class type 
MRLC annual herbaceous  USGS NLCD 30 m annual plant percent cover 
MRLC bare ground  USGS NLCD 30 m bare ground percent cover 
MRLC big sagebrush  USGS NLCD 30 m big sagebrush percent cover 
MRLC herbaceous  USGS NLCD 30 m herbaceous plants percent cover 
MRLC litter  USGS NLCD 30 m litter percent cover  
MRLC sagebrush USGS NLCD 30 m sagebrush percent cover  
MRLC shrub height  USGS NLCD 30 m average height of shrubs 
MRLC shrub  USGS NLCD 30 m shrub percent cover 
NDVI (resampled from 1-m 
resolution) 

2017 NAIP >> 
QGIS 

1/3 arc 
second 

green vegetation cover 

MSU LiDAR NDVI (biomass index) 2015 -- 2019 NAIP 
+ DSM 

0.6m index of vegetation that incorporates digital 
surface model data 



 
 

263 
MSU LiDAR NDVI RoV 2015 -- 2019 NAIP 

+ DSM 
0.6m heterogeneity of biomass index 

MSU lowland NDVI 2015-2017-2019 
NAIP  

0.6 m index of lowland vegetation cover  

MSU heavy shrubs 2015-2017-2019 
NAIP 

0.6 m index of large shrubs (e.g., juniper) 

MSU medium shrubs 2015-2017-2019 
NAIP 

0.6 m index of medium shrubs (e.g., sagebrush, 
greasewood) 

MSU forest  2015-2017-2019 
NAIP 

0.6 m index of trees 

MSU sagebrush 2015-2017-2019 
NAIP 

0.6 m sagebrush cover estimates 

MSU bare ground  2015-2017-2019 
NAIP 

0.6 m bare ground cover estimates 

MSU protection DSM >> SAGA 
GIS 

0.9 m  index of how landscape objects shelter an area  

MSU landscape structure DSM >> SAGA 
GIS 

0.9 m index of how rugged the landscape surface is due 
to all surface objects  

MSU tall objects DSM >> SAGA 
GIS 

0.9 m index of the density of tall or prominent objects on 
the landscape 

MSU vegetation height DSM-DEM >> 
SAGA GIS 

0.9m index of the height of objects on the landscape, 
typically vegetation 

MSU vegetation height RoV DSM-DEM >> 
SAGA GIS 

0.9m proximal heterogeneity of the height of objects on 
the landscape, typically vegetation 

MSU fine-scale landscape ruggedness DEM>> SAGA GIS 0.9m index of fine-scale landscape ruggedness due to 
terrain features such as stream banks   

MSU fine-scale landscape ruggedness 
RoV 

DEM>> SAGA GIS 0.9m heterogeneity of fine-scale landscape ruggedness 

proximity to hydrologic channels  DEM >> SAGA 
GIS 

1/3 arc 
second 

distance to areas where surface water may persist 

proximity to water bodies  DEM >> SAGA 
GIS 

1/3 arc 
second 

distance to areas where surface water is present 
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proximity to water bodies RoV DEM >> SAGA 

GIS 
1/3 arc 
second 

proximal heterogeneity of water bodies 

fence line density  BLM >> QGIS 1/3 arc 
second 

density of fences  

multiresolution ridge top flatness DEM >> SAGA 
GIS 

1/3 arc 
second 

index of highland area flatness 

multiresolution valley bottom flatness  DEM >> SAGA 
GIS 

1/3 arc 
second 

index of bottomland flatness 

mid-slope position  DEM >> SAGA 
GIS 

1/3 arc 
second 

index of middle slopes between ridges and valleys  

normalized height   DEM >> SAGA 
GIS 

1/3 arc 
second 

elevation of the land surface normalized by 
surrounding area   

standardized height  DEM >> SAGA 
GIS 

1/3 arc 
second 

elevation of the land surface standardized by all 
heights in the study area 

wind exposition  DEM >> SAGA 
GIS 

1/3 arc 
second 

exposure to wind  

morphometric protection DEM >> SAGA 
GIS 

1/3 arc 
second 

index of how topographic relief shelters and area 

slope height  DEM >> SAGA 
GIS 

1/3 arc 
second 

height of slopes relative to relief in the immediate 
vicinity 

valley depth  DEM >> SAGA 
GIS 

1/3 arc 
second 

vertical distance an area is from the basal channel 
below   

vector terrain ruggedness DEM >> SAGA 
GIS 

1/3 arc 
second 

index of topographic ruggedness that highlights 
severe ruggedness 

terrain ruggedness index DEM >> SAGA 
GIS 

1/3 arc 
second 

common index of the ruggedness of the landscape 
in an area 

topographic position index multiscale DEM >> SAGA 
GIS 

1/3 arc 
second 

multiscale index of landscape topographic 
position, (e.g., valley, midslope, ridge) 

topographic position index DEM >> SAGA 
GIS 

1/3 arc 
second 

standard index of landscape topographic position, 
(e.g., valley, midslope, ridge) 

topographic wetness index DEM >> SAGA 
GIS 

1/3 arc 
second 

index of the expected or potential soil wetness 
based on topography 
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total insolation DEM >> SAGA 

GIS 
1/3 arc 
second 

index of the total solar insolation that a parcel of 
the landscape receives 

daylength PTT timestamp >> 
R 

daily the time interval between sunrise and sunset 

daily precipitation  PRISM >> R daily, 4 km PRISM estimates of daily mean precipitation  
daily mean temperature PRISM >> R daily, 4 km PRISM estimates of daily mean temperature  
age of female sage-grouse PTT timestamp >> 

R 
daily approximate age of female based on age at capture 

plus days elapsed  



266 
 

Table 13. List of predictor and response variables selected for inclusion in redundancy analysis 
(RDA) models of female sage-grouse movements, prior to variance inflation factor screening and 
forward selection routines. All response variables and modulating variables were included in all 
the RDA models. Column 3 indicates either the power by which a variable was transformed, a 
natural log transformation (log), or a logit transformation. The 75th quartile is labeled Q75 for 
some summary statistics. 
Raw Predictor Computed Summary Statistic Transformation 
Response Variables 
speed (h-S) average speed of nearest neighbor 

points (nnp) 
0.3 

standard deviation of speed 
(h-S-SD) 

standard deviations of nnp speeds 0.165 

area (h-A) hull area 0.285 
enclosed points (h-I) number of hull-enclosed points 0.066 
revisits (h-RV) hull revisits logit 
duration (h-D) hull-mean number of points per visit  0.1 
eccentricity (h-E) hull eccentricity logit 
net displacement from start 
(ND-nest) 

net displacement from start at first-
known nest site 

0.12 

100-m patch revisits (RV) hull-mean revisitations of 100-m nnp-
patches 

0.035 

100-m patch residence time 
(RT) 

hull-mean residence time in 100-m 
nnp-patches 

0.075 

RT coefficient of variation 
(RT-cov) 

hull-CV of residence time in 100-m 
nnp-patches 

0.615 

500-m patch RT-cov  
(RT500-cov) 

hull-CV of residence time in 500-m 
nnp-patches 

0.45 

100-m patch time-to-return 
(TtoR) 

hull-mean of median time-to-return of 
nnp-patches 

0.255 

TtoR coefficient of variation 
(TtoR-cov) 

hull-CV of median time-to-return of 
nnp-patches 

0.585 

500-m TtoR-cov (TtoR500-
cov) 

hull-CV of median time-to-return of 
nnp-patches 

0.35 

Modulator Variables 
day length mean of values at nearest neighbor 

points 
2.5 

female age in days age at hull parent point 1 
precipitation mean of values at nearest neighbor 

points 
0.3 

temperature mean of values at nearest neighbor 
points 

(x+27)1.5 

Vegetation Covariates 
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Barren hullwise zonal mean logit 
Barren hullwise zonal CV log+1 
Barren mean of 100-m patch zonal means 0.357 
Barren hull-CV of 100-m patch zonal  means 0.315 
Barren mean of 30-m patch zonal means 0.41 
Forest hullwise zonal mean logit 
Forest hullwise zonal CV logit 
Forest mean of 100-m patch zonal means logit 
Forest mean of 30-m patch zonal means logit 
Heavy Shrub hullwise zonal mean ((x+1)^-0.73) *-1 
Heavy Shrub hullwise zonal CV log+1 
Heavy Shrub mean of 100-m patch zonal means logit 
Heavy Shrub mean of 30-m patch zonal means 0.18 
Height hullwise zonal mean 0.045 
Height mean of 30-m patch zonal means 0.155 
Height  mean of 100-m patch zonal means (x^-0.123) *-1 
LANDFIRE sage mean of 100-m patch zonal means 1.92 
LANDFIRE sage hullwise zonal mean (x+0.01)^1.665 
Landscape Structure mean of 30-m patch zonal Q75s ((x+1)^-0.057) *-

1 
Lowland NDVI hullwise zonal mean log+1 
Lowland NDVI hullwise zonal CV 0.077 
Lowland NDVI mean of 100-m patch zonal means 1 
Lowland NDVI mean of 30-m patch zonal means log+1 
Lowland NDVI hull-CV of 30-m patch zonal means 0.01 
Medium Shrub hullwise zonal mean ((x+1)^-0.24) *-1 
Medium Shrub hullwise zonal CV log+1 
Medium Shrub mean of 100-m patch zonal means 0.164 
Medium Shrub mean of 30-m patch zonal means 0.145 
Protection mean of 30-m patch zonal Q75s log 
Protection hull-CV of 30-m patch Q75s log 
Ruggedness hull-CV of 30-m patch Q75s log 
Sage hullwise zonal mean logit 
Sage hullwise zonal CV log+1 
Sage mean of 100-m patch zonal means 0.055 
Sage mean of 30-m patch zonal means 0.1375 
Sage hull-CV of 30-m patch zonal means log+1 
Structure mean of 30-m patch zonal Q75s logit 
Tall Objects hull-CV of 30-m patch Q75s logit 
Vegetation Biomass hullwise zonal mean (x^-9.5) *-1 
Vegetation Biomass mean of 100-m patch zonal means (x^-10.4) *-1 
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Vegetation Biomass hull-CV of 100-m patch zonal means 0.23 
Vegetation Biomass hull-rCD of 100-m patch zonal means 0.23 
Vegetation Biomass mean of 30-m patch zonal means (x^-10.4) *-1 
Vegetation Biomass hull-CV of 30-m patch zonal means 0.23 
Vegetation Biomass hull-rCD of 30-m patch zonal means 0.23 
Radius of Variance of 
Biomass 

mean of 30-m patch zonal means (x^-1.77) *-1 

Radius of Variance of 
Biomass 

mean of 100-m patch zonal means (x^-1.63) *-1 

Topography Covariates 
LiDAR Vector Ruggedness 
Measure 

hull-mean of 30-m patch zonal means log + 0.0001 

Midslope Position hull zonal mean 1 
Midslope Position hull-mean of 30-m patch zonal means log + 1 
Midslope Position hull-mean of 100-m patch zonal 

means 
log + 1 

Morphometric Protection 
Index 

hull zonal mean sqrt 

Morphometric Protection 
Index 

hull-mean of 30-m patch zonal means log + 1 

Morphometric Protection 
Index 

hull-mean of 100-m patch zonal 
means 

log + 1 

Multiresolution Ridge Top 
Flatness 

hull zonal mean sqrt 

Multiresolution Ridge Top 
Flatness 

hull-mean of 30-m patch zonal means log + 1 

Multiresolution Ridge Top 
Flatness 

hull-mean of 100-m patch zonal 
means 

log + 1 

MultiResolution Valley 
Bottom Flatness 

hull zonal mean sqrt 

MultiResolution Valley 
Bottom Flatness 

hull-mean of 30-m patch zonal means log + 1 

MultiResolution Valley 
Bottom Flatness 

hull-mean of 100-m patch zonal 
means 

log + 1 

Multiscale Topographic 
Position Index 

hull-mean of 30-m patch zonal means log + 1 

Multiscale Topographic 
Position Index 

hull-mean of 100-m patch zonal 
means 

log + 1 

Normalized Height hull zonal mean 1 
Normalized Height hull-mean of 30-m patch zonal means log + 1 
Normalized Height hull-CV of 30-m patch zonal means sqrt 
Normalized Height hull-mean of 100-m patch zonal 

means 
log + 1 
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Proximity to Channels hull zonal mean sqrt 
Proximity to Channels hull-mean of 30-m patch zonal means log + 1 
Proximity to Channels hull-mean of 100-m patch zonal 

means 
log + 1 

Proximity to Water Bodies hull zonal mean sqrt 
Proximity to water bodies hull-mean of 30-m patch zonal means log + 1 
Proximity to Water Bodies hull-mean of 100-m patch zonal 

means 
log + 1 

Radius of Variance of LiDAR 
VRM 

hull-mean of 30-m patch zonal means (1/x) *-1 

Radius of Variance of Water 
Bodies 

hull-mean of 100-m patch zonal 
means 

(1/x) *-1 

Slope Height hull zonal mean sqrt 
Slope Height hull-mean of 30-m patch zonal means log + 1 
Slope Height hull-CV of 30-m patch zonal means sqrt 
Slope Height hull-mean of 100-m patch zonal 

means 
log + 1 

Solar Insolation hull zonal mean 1 
Solar Insolation hull-mean of 30-m patch zonal means log + 1 
Solar Insolation hull-mean of 100-m patch zonal 

means 
log + 1 

Standardized Height hull zonal mean sqrt 
Standardized Height hull-mean of 30-m patch zonal means log + 1 
Standardized Height hull-CV of 30-m patch zonal means sqrt 
Standardized Height hull-mean of 100-m patch zonal 

means 
log + 1 

Topographic Position Index hull zonal mean 1 
Topographic Position Index hull zonal mean 1 
Topographic Wetness Index hull zonal mean 1 
Topographic Wetness Index hull-mean of 30-m patch zonal means log + 1 
Topographic Wetness Index hull-CV of 30-m patch zonal means sqrt 
Topographic Wetness Index hull-mean of 100-m patch zonal 

means 
log + 1 

Valley Depth hull zonal mean log 
Valley Depth hull-mean of 30-m patch zonal means log + 1 
Valley Depth hull-CV of 30-m patch zonal means sqrt 
Valley Depth hull-mean of 30-m patch zonal means log + 1 
Vector Ruggedness Measure hull zonal mean sqrt 
Vector Ruggedness Measure hull-mean of 30-m patch zonal means sqrt 
Vector Ruggedness Measure hull-CV of 30-m patch zonal means sqrt 
Vector Ruggedness Measure hull-mean of 100-m patch zonal 

means 
sqrt 
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Wind Exposition hull zonal mean 1 
Wind Exposition hull-mean of 30-m patch zonal means log + 1 
Wind Exposition hull-CV of 30-m patch zonal means log + 1 
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Table 14. List of all ecological variables considered for our behavior-specific model of female sage-grouse use-intensity. Our model 
was a negative-binomial generalized additive model of number of hull-enclosed points as a function of landscape conditions, 
conditional on behavior modes, and covariate correcting for pertinent movement properties. Predictor variable screening was 
conducted with Pearson correlation and variance inflation factor screening. 

Base Variable Summary Statistic Transform Ecological Relevance  
Barren hull-mean of 30-m patch zonal means 1.00 bare ground cover estimates 
Daily Temperature mean of hull nearest neighbor points  1.00 PRISM estimates of daily mean temperature  
Female Age female age at hull parent point 1.00 approximate age of female based on age at capture plus 

days elapsed  
Fine-grain Ruggedness (LiDAR based) hull-mean of 30-m patch zonal means log index of how rugged the landscape surface is due to all 

surface objects  
Fine-grain Ruggedness (LiDAR based) hull-CV of 30-m patch zonal means 1.00 variability of index of how rugged the landscape 

surface is due to all surface objects  
Fine-grain Ruggedness (LiDAR based) hull-rCD of 30-m patch zonal  means 1.00 variability of index of how rugged the landscape 

surface is due to all surface objects  
Fine-grained Sage hull-mean of 30-m patch zonal means sqrt actual sagebrush areal cover estimates (not percent 

coarse sagebrush cover class) 
Hull Area hull area 1.00 area of short-term home range 
Hull Revisits number of hull revisits 1.00 relatively coarse temporal scale revisitation to prior 

short-term home ranges 
Hull Timespan timespan of hull nearest neighbor 

points 
1.00 time span of short term-home range giving home range 

temporal context 
Hull-enclosed Points (response variable) number of hull-enclosed points 1.00 number of use points accrued by an individual inside a 

short-term home range  
LANDFIRE sage hull-mean of 30-m patch zonal means 1.00 percent LANDFIRE vegetation data that is sagebrush 

class 
LANDFIRE sage hull-CV of 30-m patch zonal means 1.00 variability of percent LANDFIRE vegetation data that 

is sagebrush class 
LANDFIRE sage hull-rCD of 30-m patch zonal  means 1.00 variability of percent LANDFIRE vegetation data that 

is sagebrush class 
Length of Day mean of hull nearest neighbor points  1.00 the time interval between sunrise and sunset 
LiDAR Vector Ruggedness Measure hull-mean of 30-m patch zonal means 1.00 index of fine-grain landscape ruggedness due to terrain 

features such as stream banks   
LiDAR Vector Ruggedness Measure hull-rCD of 30-m patch zonal means 1.00 variability of fine-grain landscape ruggedness 
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Lowland NDVI hull-CV of 30-m patch zonal means 1.00 variability of index of lowland vegetation cover  
Lowland NDVI hull-mean of 30-m patch zonal means 1.00 index of lowland vegetation cover  
Lowland NDVI hull-rCD of 30-m patch zonal means 1.00 variability of index of lowland vegetation cover  
Medium Shrub hull-mean of 30-m patch zonal means sqrt index of medium shrubs (e.g., sagebrush, greasewood) 
MultiResolution Valley Bottom Flatness hull-CV of 30-m patch zonal means 1.00 variability of index of bottomland flatness 
MultiResolution Valley Bottom Flatness hull-mean of 30-m patch zonal means 1.00 index of bottomland flatness 
MultiResolution Valley Bottom Flatness hull-rCD of 30-m patch zonal means 1.00 variability of index of bottomland flatness 
NED Vector Ruggedness Measure hull-CV of 30-m patch zonal means 1.00 variability of index of topographic ruggedness that 

highlights severe ruggedness 
NED Vector Ruggedness Measure hull-rCD of 30-m patch zonal means 1.00 variability of index of topographic ruggedness that 

highlights severe ruggedness 
NED Vector Ruggedness Measure hull-mean of 30-m patch zonal means sqrt common index of the ruggedness of the landscape in an 

area 
Normalized Height hull-CV of 30-m patch zonal means 1.00 variability of elevation of the land surface normalized 

by surrounding area   
Normalized Height hull-mean of 30-m patch zonal means 1.00 elevation of the land surface normalized by 

surrounding area   
Normalized Height hull-rCD of 30-m patch zonal means 1.00 variability of elevation of the land surface normalized 

by surrounding area   
Proximity to Channels hull-CV of 30-m patch zonal means 1.00 distance to areas where surface water may persist 
Proximity to Water Bodies hull-mean of 30-m patch zonal means sqrt distance to areas where surface water is present 
Slope Height hull-mean of 30-m patch zonal means log height of slopes relative to relief in the immediate 

vicinity 
Slope Height hull-CV of 30-m patch zonal means 1.00 variability of height of slopes relative to relief in the 

immediate vicinity 
Solar Insolation hull-mean of 30-m patch zonal means 1.00 index of the total solar insolation that a parcel of the 

landscape receives 
Topographic Wetness Index hull-CV of 30-m patch zonal means 1.00 variability of the expected or potential soil wetness 

based on topography 
Topographic Wetness Index hull-mean of 30-m patch zonal means 1.00 index of the expected or potential soil wetness based on 

topography 
Topographic Wetness Index hull-rCD of 30-m patch zonal means 1.00 variability of the expected or potential soil wetness 

based on topography 
Valley Depth hull-mean of 30-m patch zonal means 1.00 vertical distance an area is from the basal channel 

below  
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Vegetation Biomass  hull-mean of 30-m patch zonal means 1.00 index of vegetation that incorporates digital surface 

model data 
Vegetation Biomass RoV hull-mean of 30-m patch zonal means 1.00 proximal heterogeneity of biomass index 
Vegetation Height (LiDAR based) hull-mean of 30-m patch zonal means (x^0.6)*-1 index of the height of objects on the landscape, 

typically vegetation 
Vegetation Height (LiDAR based) hull-mean of 30-m patch zonal means 1.00 proximal heterogeneity of the height of objects on the 

landscape, typically vegetation 
Water Body Presence RoV hull-mean of 30-m patch zonal means 3.00 proximal heterogeneity of surface water presence 
Wind Exposition hull-mean of 30-m patch zonal means 1.00 exposure to wind  
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Figure 35. Estimates of partial effects of age, length of day, hull revisits, and behavior type on 
female sage-grouse use-intensity. The y axis represents the contribution of the terms to the linear 
predictor of log(use-intensity). A rug plot is provided at the bottom of the behavior forest plot to 
indicate relative sample sizes among the 7 behavior modes. 
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Figure 36. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 37. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 38. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 39. Estimates of smooth functions, s(x), of the effect of vegetation biomass RoV on 
female sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-
season types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 40. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 41. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 42. Estimates of smooth functions, s(x), of the effect of normalized height coefficient of 
variation on female sage-grouse use-intensity for smooth-factor interactions with different levels 
of behavior-season types. The y axis represents the contribution of the smooth term to the linear 
predictor of log(use-intensity). 
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Figure 43. Estimates of smooth functions, s(x), of the effect of MultiResolution valley bottom 
flatness on female sage-grouse use-intensity for smooth-factor interactions with different levels 
of behavior-season types. The y axis represents the contribution of the smooth term to the linear 
predictor of log(use-intensity). 
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Figure 44. Estimates of smooth functions, s(x), of the effect of fine-grained sage on female sage-
grouse use-intensity for smooth-factor interactions with different levels of behavior-season types. 
The y axis represents the contribution of the smooth term to the linear predictor of log(use-
intensity). 
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Figure 45. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 46. Estimates of smooth functions, s(x), of the effect of water body presence radius of 
variance (RoV) on female sage-grouse use-intensity for smooth-factor interactions with different 
levels of behavior-season types. The y axis represents the contribution of the smooth term to the 
linear predictor of log(use-intensity). 
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Figure 47. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 48. Estimates of smooth functions, s(x), of the effect of LiDAR vector ruggedness 
measure on female sage-grouse use-intensity for smooth-factor interactions with different levels 
of behavior-season types. The y axis represents the contribution of the smooth term to the linear 
predictor of log(use-intensity). 
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Figure 49. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Figure 50. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 



291 
 

 
Figure 51. Estimates of smooth functions, s(x), of the effect of a predictor variable on female 
sage-grouse use-intensity for smooth-factor interactions with different levels of behavior-season 
types. The y axis represents the contribution of the smooth term to the linear predictor of 
log(use-intensity). 
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Table 15. List of covariate values used to generate behavior-specific conditional effects maps 
that we combined into a multi-behavior multiscale habitat map for female sage-grouse. 

Behavior Area (m2) Tspan Hull Revisits Female Age 
(days) Daylength 

laying 235824 48 8 1000 14.8 
incubating 81430 54 4 1000 15.3 
brood 411235 54.9 3 1000 16 
potential brood 541327 46 11 1000 16 
unclassified 727283 46 8 1000 14 
exploring 2065277 47 1 1000 11.3 
winter 1270735 46 8 1000 9.5 
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Table 16. Behavior specific statistics from our dataset and fitted generalized additive model of female sage-grouse use-intensity. Table 
illustrates prediction error and sample properties using the hold-out validation dataset randomly subset from our total dataset. Statistics 
are based on 25% of our total data so are only roughly representative of the complete dataset. However, qualitive comparisons are 
informative. For example, our brood behavior included the fewest individuals and our potential brood behavior had the fewest 
observations. 

Behavior R2 RMSE MAE Mean_obs Median_obs SD_obs Min_obs Max_obs females n_obs 
laying 0.69 87.04 61.61 236.95 193.00 154.79 25 929 65 926 
incubating 0.63 71.21 43.63 151.15 108.00 115.36 32 738 71 2128 
brood 0.78 92.63 55.00 231.01 148.00 197.31 30 960 19 628 
potential 
brood 0.83 93.67 69.90 338.10 306.00 223.95 45 1373 30 414 
unclassified 0.60 149.06 103.49 287.39 212.00 235.42 4 1556 74 13423 
winter range 0.78 85.32 52.71 201.89 134.00 181.09 6 1415 43 4806 
exploring 0.39 58.42 35.37 89.33 70.00 74.53 4 970 68 5352 
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Figure 52. Model diagnostic plot comparing the distribution of observed residuals to those 
simulated from our fitted generalized additive model of female sage-grouse use-intensity. 
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Figure 53. Model diagnostic plot from our fitted generalized additive model of female sage-
grouse use-intensity. 
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Figure 54. Indication of how predicted use-intensity corresponds to observed use-intensity for 
our generalized additive model of female sage-grouse use-intensity. 
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Figure 55. Model diagnostic plot of scaled residuals from our generalized additive model of female sage-grouse use-intensity. Gray 
shading indicates distribution of residuals in the residual vs. predicted plot. 
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Table 17. Description of all predictor variables used for sage-grouse daily nest survival nesting ecology research. 
Raw Predictor Computed Summary Statistic Transform Ecological Relevance 
Movement Properties 
hull eccentricity index to the elongation of a hull 1 index to directional movement 
hull enclosed points number of points accrued in a hull 

footprint 
1 use-intensity of home range 

hull use-intensity hull enclosed points / hull area 1 areal density of points in home range   
net displacement from first 
nest 

hull-mean displacement from first 
nest 

1  indicates proximity to initial nesting area  

Season and Time 
daily precipitation (PRISM) mean of values at nearest 

neighbor points 
1 PRISM estimates of daily mean precipitation 

daily temperature (PRISM) mean of values at nearest 
neighbor points 

1 PRISM estimates of daily mean temperature 

female age category a factor indicating female age 1 nest survival may vary due to female experience  
female age discretized  age category of female 1 female may gain experience with age which may 

increase nest survival 
female age in days age at hull parent point 1 age at hull parent point 
length of day mean of values at nearest 

neighbor points 
1 the time interval between sunrise and sunset 

nest age age of nest in days since 
incubation began 

1 nest survival may change as the exposure period 
lengthens 

nest number sequence of nesting attempts for 
the year (1 - 3) 

1 first, second, or third nesting attempts may have 
different survival  

Terrain and Water 
LiDAR vector ruggedness 
measure (VRM) 

hull-mean of 30-m patch zonal 
means 

1 index of surface roughness in topography 
(LiDAR grain size) 

midslope position hull zonal mean 1 has a topoclimatic association with warmer 
zones of slopes  

midslope position hull-mean of 30-m patch zonal 
means 

1 has a topoclimatic association with warmer 
zones of slopes  
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midslope position hull-mean of 100-m patch zonal 

means 
1 has a topoclimatic association with warmer 

zones of slopes  
morphometric protection 
index 

hull zonal mean 1 index of how topographically protected a unit of 
land is (e.g., from wind) 

morphometric protection 
index 

hull-mean of 30-m patch zonal 
means 

1 index of how topographically protected a unit of 
land is (e.g., from wind) 

morphometric protection 
index 

hull-mean of 100-m patch zonal 
means 

1 index of how topographically protected a unit of 
land is (e.g., from wind) 

multi-resolution valley 
bottom flatness 

hull zonal mean 1 index of openness and flatness of valley bottoms 

multi-resolution valley 
bottom flatness 

hull zonal mean 1 index of openness and flatness of valley bottoms 

multi-resolution valley 
bottom flatness 

hull-mean of 30-m patch zonal 
means 

1 index of openness and flatness of valley bottoms 

multi-resolution valley 
bottom flatness 

hull-mean of 30-m patch zonal 
means 

1 index of openness and flatness of valley bottoms 

multi-resolution valley 
bottom flatness 

hull-mean of 100-m patch zonal 
means 

1 index of openness and flatness of valley bottoms 

multi-resolution valley 
bottom flatness 

hull-mean of 100-m patch zonal 
means 

1 index of openness and flatness of valley bottoms 

NED vector ruggedness 
measure (VRM) 

hull zonal mean logit indicates terrain ruggedness of a unit of land 

NED vector ruggedness 
measure (VRM) 

hull-mean of 30-m patch zonal 
means 

logit index of surface roughness in topography (NED 
grain size) 

NED vector ruggedness 
measure (VRM) 

hull-mean of 100-m patch zonal 
means 

logit index of surface roughness in topography (NED 
grain size) 

NED vector ruggedness 
measure (VRM) 

hull-CV of 30-m patch zonal 
means 

1 local variability of surface roughness in 
topography (NED grain size) 

normalized height hull zonal mean 1 topographic height normalized by heights in the 
immediate vicinity  

normalized height hull-mean of 30-m patch zonal 
means 

1 topographic height normalized by heights in the 
immediate vicinity 
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normalized height hull-CV of 30-m patch zonal 

means 
1 local variability of the land surface normalized 

by surrounding area   
normalized height hull-mean of 100-m patch zonal 

means 
1 topographic height normalized by heights in the 

immediate vicinity 
proximity to flow channels 
(km) 

hull zonal mean 1 distance to channels that provide loafing sites, 
puddles, mesic areas  

proximity to flow channels 
(km) 

hull-mean of 30-m patch zonal 
means 

1 distance to channels that provide loafing sites, 
puddles, mesic areas  

proximity to flow channels 
(km) 

hull-mean of 100-m patch zonal 
means 

1 distance to channels that provide loafing sites, 
puddles, mesic areas 

proximity to water bodies hull zonal mean 1 distance to water bodies near where grazing may 
be more intensive 

proximity to water bodies hull-mean of 30-m patch zonal 
means 

sqrt distance to water bodies near where grazing may 
be more intensive 

proximity to water bodies hull-mean of 100-m patch zonal 
means 

1 distance to water bodies near where grazing may 
be more intensive 

radius of variance (RoV) of 
LiDAR VRM 

hull-mean of 30-m patch zonal 
means 

1 local heterogeneity of surface roughness in 
topography (LiDAR grain size) 

radius of variance (RoV) to 
water bodies 

hull-mean of 100-m patch zonal 
means 

1 local heterogeneity of distance to water bodies 

slope height hull zonal mean 1 height of a slope above flow channels 
slope height hull-mean of 30-m patch zonal 

means 
1 height of a slope above flow channels 

slope height hull-CV of 30-m patch zonal 
means 

1 local variability of slope heights above flow 
channels 

slope height hull-mean of 100-m patch zonal 
means 

1 height of a slope above flow channels 

solar insolation hull zonal mean 1 how much solar flux a unit of land will receive 
based on topography    

solar insolation hull-mean of 30-m patch zonal 
means 

1 how much solar flux a unit of land will receive 
based on topography    

solar insolation hull-mean of 100-m patch zonal 
means 

1 how much solar flux a unit of land will receive 
based on topography    
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standardized height hull zonal mean 1 absolute height weighted by normalized height 
standardized height hull-mean of 30-m patch zonal 

means 
1 absolute height weighted by normalized height 

standardized height hull-CV of 30-m patch zonal 
means 

1 local variability of absolute height weighted by 
normalized height 

standardized height hull-mean of 100-m patch zonal 
means 

1 absolute height weighted by normalized height 

topographic position index hull zonal mean 1 indicates if a unit of land has a low, moderate, or 
high position   

topographic position index hull zonal mean 1 indicates if a unit of land has a low, moderate, or 
high position   

topographic position index 
(multiscale) 

hull-mean of 30-m patch zonal 
means 

1 indicates if a unit of land has a low, moderate, or 
high position   

topographic position index 
(multiscale) 

hull-mean of 100-m patch zonal 
means 

1 indicates if a unit of land has a low, moderate, or 
high position   

topographic wetness index hull zonal mean 1 index of the expected or potential soil wetness 
based on topography 

topographic wetness index hull-mean of 30-m patch zonal 
means 

1 index of the expected or potential soil wetness 
based on topography 

topographic wetness index hull-CV of 30-m patch zonal 
means 

1 local variability of expected or potential soil 
wetness based on topography 

topographic wetness index hull-mean of 100-m patch zonal 
means 

1 index of the expected or potential soil wetness 
based on topography 

valley depth hull zonal mean 1 indicates how recessed a unit of land is on the 
landscape  

valley depth hull-mean of 30-m patch zonal 
means 

1 indicates how recessed a unit of land is on the 
landscape  

valley depth hull-CV of 30-m patch zonal 
means 

1 local variability of how topographically recessed 
a unit of land is  

valley depth hull-mean of 30-m patch zonal 
means 

1 indicates how recessed a unit of land is on the 
landscape  

wind exposition hull zonal mean 1 indicates how exposed to wind a unit of land is  
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wind exposition hull-mean of 30-m patch zonal 

means 
1 indicates how exposed to wind a unit of land is 

wind exposition hull-CV of 30-m patch zonal 
means 

1 local variability of how exposed to wind a unit 
of land is 

wind exposition hull-mean of 100-m patch zonal 
means 

1 indicates how exposed to wind a unit of land is 

Vegetation 
barren hull zonal mean 1 bare ground cover estimates 
barren hull zonal CV 1 local variability of bare ground cover estimates 
barren hull-mean of 100-m patch zonal 

means 
1 bare ground cover estimates 

barren hull-CV of 100-m patch zonal 
means 

1 local variability of bare ground cover estimates 

barren hull-mean of 30-m patch zonal 
means 

1 bare ground cover estimates 

LANDFIRE sage hull-mean of 30-m patch zonal 
means 

1 coarse-scale sagebrush cover type estimates 

LANDFIRE sage hull-CV of 30-m patch zonal 
means 

1 local variability of coarse-scale sagebrush cover 
type estimates 

LANDFIRE sage hull-mean of 100-m patch zonal 
means 

1 coarse-scale sagebrush cover type estimates 

LANDFIRE sage hull zonal mean 1 coarse-scale sagebrush cover type estimates 
lowland NDVI hull zonal mean 1 topographically low-lying vegetation index  
lowland NDVI hull zonal CV 1 local variability of topographically low-lying 

vegetation index  
lowland NDVI hull-mean of 100-m patch zonal 

means 
1 topographically low-lying vegetation index 

lowland NDVI hull-mean of 30-m patch zonal 
means 

1 topographically low-lying vegetation index 

lowland NDVI hull-CV of 30-m patch zonal 
means 

1 local variability of topographically low-lying 
vegetation index  

medium shrub hull zonal mean 1 medium stature shrub cover estimates 
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medium shrub hull zonal CV 1 local variability of medium stature shrub cover 

estimates 
medium shrub hull-mean of 30-m patch zonal 

means 
1 medium stature shrub cover estimates 

medium shrub hull-mean of 100-m patch zonal 
means 

1 medium stature shrub cover estimates 

radius of variance (RoV) of 
veg biomass 

hull-mean of 30-m patch zonal 
means 

1 vegetation index that incorporates digital surface 
model data 

radius of variance (RoV) of 
veg biomass 

hull-mean of 100-m patch zonal 
means 

1 vegetation index that incorporates digital surface 
model data 

sage hull zonal mean 1 fine-scale sagebrush cover type estimates 
sage hull zonal CV 1 local variability of fine-scale sagebrush cover  
sage hull-mean of 30-m patch zonal 

means 
sqrt fine-scale sagebrush cover type estimates 

sage hull-mean of 100-m patch zonal 
means 

1 fine-scale sagebrush cover type estimates 

sage hull-mean of 30-m patch zonal 
means 

1 fine-scale sagebrush cover type estimates 

sage hull-rCD of 30-m patch zonal 
means 

1 local variability of fine-scale sagebrush cover  

vegetation biomass hull zonal mean 1 vegetation index that incorporates digital surface 
model data 

vegetation biomass hull-mean of 100-m patch zonal 
means 

1 vegetation index that incorporates digital surface 
model data 

vegetation biomass hull-CV of 100-m patch zonal 
means 

1 local variability of biomass index 

vegetation biomass hull-rCD of 100-m patch zonal 
means 

1 heterogeneity of biomass index 

vegetation biomass hull-mean of 30-m patch zonal 
means 

1 vegetation index that incorporates digital surface 
model data 

vegetation biomass hull-CV of 30-m patch zonal 
means 

1 local variability of biomass index 
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vegetation biomass hull-rCD of 30-m patch zonal 

means 
1 heterogeneity of biomass index 

vegetation height hull zonal mean 1 index of the height of objects on the landscape, 
typically vegetation 

vegetation height hull-mean of 30-m patch zonal 
means 

1 index of the height of objects on the landscape, 
typically vegetation 

vegetation height hull-mean of 100-m patch zonal 
means 

1 index of the height of objects on the landscape, 
typically vegetation 

vegetation height hull-mean of 30-m patch zonal 
means 

1 index of the height of objects on the landscape, 
typically vegetation 

vegetation height hull-mean of 30-m patch zonal 
means 

1 index of the height of objects on the landscape, 
typically vegetation 
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Table 18. List of predictor variables and smooth-term results from fitted generalized additive 
model evaluating how distance from first nest for a female sage-grouse varies as a function of 
study time and other covariates. The estimated degrees of freedom (edf) indicate the degree of 
non-linearity of the model terms with a value around 1 indicating a linear relationship with 
distance from first nest and larger values indicating progressively more ‘wiggly’ relationships.  

GAM Term edf Ref.df F p-value 
s(study time) 137.06 144.00 1195.99 0.00 
s(daily precipitation) 0.46 9.00 0.04 0.37 
s(number of enclosed points) 7.30 9.00 13733.69 0.00 
s(hull area) 150.07 164.00 394.55 0.00 
s(sage) 86.02 94.00 451.66 0.00 
s(barren) 80.60 94.00 335.34 0.00 
s(vegetation biomass) 65.06 69.00 223.12 0.00 
s(normalized height) 42.27 44.00 243.80 0.00 
s(individual ID)  72.81 73.00 867.86 0.00 

 
Figure 56. Scatterplot illustrating the relationship between study time and distance from first nest 
for female sage-grouse. Each point represents an observation of a short-term home range for an 
individual. Observation histories span up to 4 years. The blue line represents a generalized 
additive model fitted to the time series of distance from first nest and study time. 
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Figure 57. Conditional effects plot indicating how distance from first nest for female sage-grouse 
varies as a function of study time, short-term home range area (km2), and normalized height. 
Normalized height is an index of topographic position with greater values indicating higher 
elevations relative to those in the local area. 
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Figure 58. Conditional effects plot indicating how distance from first nest for female sage-grouse 
varies as a function of study time, short-term home range area (km2), and proportion bare 
ground. 
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Figure 59. Partial effects plots from fitted generalized additive model evaluating how distance from first nest for a female sage-grouse 
varies as a function of study time and other covariates. The effect size of each variable can be discerned by examining the range of 
effect on the y-axis of each plot.
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Figure 60. Model diagnostics plot from fitted generalized additive model evaluating how 
distance from first nest for a female sage-grouse varies as a function of study time and other 
covariates. The residuals versus fitted values plot does not show concerning patterns (e.g., non-
constant variance) and the normality assumption is reasonable, although the deviance residuals 
are somewhat lite tailed.  
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Figure 61. Subplot A is a conditional effect plot generated from our final logistic-exposure 
generalized linear model indicating how daily nest survival rate changes as a function of log(use-
intensity) over quantiles of nest age. Subplot B indicates the magnitude and direction of effects 
for log(use-intensity) and nest age.  
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